RAPGEF1 is a guanine nucleotide exchange factor responsible for transmitting extracellular signals to the Ras family of GTPase located at the inside of membrane. Here, we report for the first time a homozygous mutation of RAPGEF1 in a consanguineous family with two siblings affected by neuropsychiatric disorder. To confirm the correlation of the mutation and the phenotype, we utilized in silico analysis and established a zebrafish model. Survival rate was reduced in the rapgef1a-knockdown model, and the zebrafish showed global morphological abnormalities, particularly of brain and blood vessels. Co-application of human RAPGEF1 wildtype mRNA effectively rescued the abnormal phenotype, while that of RAPGEF1 mRNA carrying the human mutation did not. This work is the first report of a human Mendelian disease associated with RAPGEF1 and the first report of a zebrafish model built for this gene. The phenotype of zebrafish model provides further evidence that defective RAPGEF1 may lead to global developmental delay in human patients.