Many model organisms have obtained a prominent status due to an advantageous combination of their life-history characteristics, genetic properties and also practical considerations. In non-crop plants, Arabidopsis thaliana is the most renowned model and has been used as study system to elucidate numerous biological processes at the molecular level. Once a complete genome sequence was available, research has markedly accelerated and further established A. thaliana as the reference to stimulate studies in other species with different biology. Within the Brassicaceae family, the arctic-alpine perennial Arabis alpina has become a model complementary to A. thaliana to study life-history evolution and ecological genomics in harsh environments. In this review, we provide an overview of the properties that facilitated the rapid emergence of A. alpina as a plant model. We summarize the evolutionary history of A. alpina, including the diversification of its mating system, and discuss recent progress in the molecular dissection of developmental traits that are related to its perennial life history and environmental adaptation. We indicate open questions from which future research might be developed in other Brassicaceae species or more distantly related plant families.