We introduce new reproducing kernel Hilbert spaces on a trapezoidal semi-infinite domain $B_{\infty}$ in the plane. We establish uniform approximation results in terms of the number of nodes on compact subsets of $B_{\infty}$ for solutions to nonhomogeneous hyperbolic partial differential equations in one of these spaces, $\widetilde{W}(B_{\infty})$. Furthermore, we demonstrate the stability of such solutions with respect to the driver. Finally, we give an example to illustrate the efficiency and accuracy of our results.