Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.

Fiona Carpenter

and 1 more

María Belén Arias

and 5 more

Invasive species are among the most important, growing threats to food security and agricultural systems. The Mediterranean fruit fly Ceratitis capitata is one of the most damaging representatives of a group of rapidly expanding species in the family Tephritidae due to their wide host range and high invasiveness. Here, we used restriction site-associated DNA sequencing (RADseq) to investigate population genomic structure and phylogeographic history of medflies collected from six sampling sites, including Africa (South Africa), the Mediterranean (Spain, Greece), Latin America (Guatemala, Brazil) and Australia. A total of 1,907 single nucleotide polymorphisms (SNPs) showed two genetic clusters separating native and introduced ranges, consistent with previous findings. In the introduced range, all individuals were assigned to one genetic cluster except for those in Brazil, which showed introgression of a genetic cluster that also appeared exclusively in South Africa and could not be previously identified using microsatellite markers. Moreover, the microbiome variations in medfly populations from selected sampling sites was assessed by amplicon sequencing of the 16S ribosomal RNA (V4 region). No strong patterns of microbiome variation were detected across geographic regions or host plants, except for the differentiation of the Brazilian specimens which showed increased diversity and unique composition of its microbiome compared to other sampling sites. The unique SNP patterns in the Brazilian specimens could point to a direct migration route from Africa with subsequent adaptation of the microbiota to the specific conditions present in Brazil. These findings significantly improve our understanding of the evolutionary history of global medfly invasions and adaptation to newly colonised environments.

Carmelo Andujar

and 7 more

Most of our understanding of island diversity comes from the study of aboveground systems, while the patterns and processes of diversification and community assembly for belowground biotas remain poorly understood. Here we take advantage of a relatively young and dynamic oceanic island to advance our understanding of eco-evolutionary processes driving community assembly within soil mesofauna. Using whole organism community DNA (wocDNA) metabarcoding and the recently developed metaMATE pipeline, we have generated spatially explicit and reliable haplotype-level DNA sequence data for soil mesofaunal assemblages sampled across the four main habitats within the island of Tenerife. Community ecological and metaphylogeographic analyses have been performed at multiple levels of genetic similarity, from haplotypes to species and supraspecific groupings. Broadly consistent patterns of local-scale species richness across different insular habitats have been found, whereas local insular richness is lower than in continental settings. Our results reveal an important role for niche conservatism as a driver of insular community assembly of soil mesofauna, with only limited evidence for habitat shifts promoting diversification. Furthermore, support is found for a fundamental role of habitat in the assembly of soil mesofauna, where habitat specialism is mainly due to colonisation and the establishment of preadapted species. Hierarchical patterns of distance decay at the community level and metaphylogeographical analyses support a pattern of geographic structuring over limited spatial scales, from the level of haplotypes through to species and lineages, as expected for taxa with strong dispersal limitations. Our results demonstrate the potential for wocDNA metabarcoding to advance our understanding of biodiversity.

Thomas Creedy

and 9 more

Metabarcoding of DNA extracted from community samples of whole organisms (whole organism community DNA, wocDNA) is increasingly being applied to terrestrial, marine and freshwater metazoan communities to provide rapid, accurate and high resolution data for novel molecular ecology research. The growth of this field has been accompanied by considerable development that builds on microbial metabarcoding methods to develop appropriate and efficient sampling and laboratory protocols for whole organism metazoan communities. However, considerably less attention has focused on ensuring bioinformatic methods are adapted and applied comprehensively in wocDNA metabarcoding. In this study we examined over 600 papers and identified 111 studies that performed COI metabarcoding of wocDNA. We then systematically reviewed the bioinformatic methods employed by these papers to identify the state-of-the-art. Our results show that the increasing use of wocDNA COI metabarcoding for metazoan diversity is characterised by a clear absence of bioinformatic harmonisation, and the temporal trends show little change in this situation. The reviewed literature showed (i) high heterogeneity across pipelines, tasks and tools used, (ii) limited or no adaptation of bioinformatic procedures to the nature of the COI fragment, and (iii) a worrying underreporting of tasks, software and parameters. Based upon these findings we propose a set of recommendations that we think the wocDNA metabarcoding community should consider to ensure that bioinformatic methods are appropriate, comprehensive and comparable. We believe that adhering to these recommendations will improve the long-term integrative potential of wocDNA COI metabarcoding for biodiversity science.