The state and dynamics of river chemistry are influenced by both anthropogenic and natural catchment characteristics. However, understanding key controls on catchment mean concentrations and export patterns comprehensively across a wide range of climate zones is still lacking, as most of this research is focused on temperate regions. In this study, we investigate the catchment controls on mean concentrations and export patterns (concentration–discharge relationship, C–Q slope) of river chemistry, using a long-term data set of up to 507 sites spanning five climate zones (i.e., arid, Mediterranean, temperate, subtropical, tropical) across the Australian continent. We use Bayesian model averaging (BMA) and hierarchical modelling (BHM) approaches to predict the mean concentrations and export patterns and compare the relative importance of 26 catchment characteristics (e.g., topography, climate, land use, land cover, soil properties and hydrology). Our results demonstrate that mean concentrations result from the interaction of catchment intrinsic and anthropogenic factors (i.e., land use, topography and soil), while export patterns are more influenced by catchment intrinsic characteristics only (i.e., topography). We also found that incorporating the effects of climate zones in a BHM framework improved the predictability of both mean concentrations and C–Q slopes, suggesting the importance of climatic controls on hydrological and biogeochemical processes. Our study provides insights into the contrasting effects of catchment controls across different climate zones. Investigating those controls can inform sustainable water quality management strategies that consider the potential changes in river chemistry state and export behaviour.