Jan Clavel

and 10 more

not-yet-known not-yet-known not-yet-known unknown Roads in cold climate mountains are known to be important vectors in the introduction and spread of non-native plant species. In the same context, mycorrhizal fungi communities are also altered by roads with a known positive effect on arbuscular mycorrhizal (AM) fungi diversity and abundance in disturbed roadsides. However, to what degree these two effects of roads are intertwined and how they are evolving over time is not well understood. In this study we conducted repeated surveys of non-native plants and AM fungi between 2012 and 2022, in the northern Scandes mountains to investigate temporal changes and interactions between roads, mycorrhizal fungi, and non-native plants. We found that the upward spread of non-native plants and lateral spread away from the roadside into the natural vegetation were so far extremely limited, with only two out of 23 non-native species showing an increase in their upper elevational limit. However, non-native plant species cover did increase over the ten year period, especially at lower elevations, and non-native richness increased from 17 to 23 species. Likewise, we saw an increase in AM fungal abundance over the last four years along the roadsides at lower elevations. Furthermore, our results suggest that increases in non-native species are unlikely to be the driving cause of the observed increase in AM fungal abundance, as AM fungi colonization varied independently of non-native species cover dynamics.

Jan Clavel

and 20 more

Aim: We aimed to assess the impact at the global level of physical anthropogenic disturbances on the dominant mycorrhizal types in ecosystems and how this mechanism can potentially lead to lasting plant community changes. Location: Globally distributed study regions Time Period: 2007-2018 Taxa studied: Plants and mycorrhizal fungi Methods: We used a database of coordinated plant community surveys following mountain roads from 894 plots in 11 mountain regions across the globe in combination with a database of mycorrhizal-plant associations in order to estimate the relative abundance of mycorrhizal types in natural and disturbed environments. Results: Our findings show that roadside disturbance promotes the cover of plants associated with arbuscular mycorrhizal (AM) fungi. This effect is especially strong in colder mountain environments and in mountain regions where plant communities are dominated by ectomycorrhizal (EcM) or ericoid-mycorrhizal (ErM) associations. Furthermore, non-native plant species, which we confirmed to be mostly AM plants, are more successful in environments dominated by AM associations. Main Conclusions: These biogeographical patterns suggest that changes in mycorrhizal types are a crucial factor in the worldwide impact of anthropogenic disturbances on mountain ecosystems by promoting AM-dominated systems and potentially weakening biotic resistance against non-native species invasion. Restoration efforts in mountain ecosystems will have to contend with changes in the fundamental make-up of EcM- and ErM plant communities induced by roadside disturbance.

Sylvia Haider

and 57 more

Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need for a standardized monitoring strategy that can be applied across mountain regions to assess distribution changes and community turnover of native and non-native plant species over space and time. Here, we present a conceptually intuitive and standardized protocol developed by the Mountain Invasion Research Network (MIREN) to systematically quantify global patterns of native and non-native species distributions along elevation gradients and shifts arising from interactive effects of climate change and human disturbance. Usually repeated every five years, surveys consist of 20 sample sites located at equal elevation increments along three replicate roads per sampling region. At each site, three plots extend from the side of a mountain road into surrounding natural vegetation. The protocol has been successfully used in 18 regions worldwide from 2007 to present. Analyses of one point in time already generated some salient results, and revealed region-specific elevational patterns of native plant species richness, but a globally consistent elevational decline in non-native species richness. Non-native plants were also more abundant directly adjacent to road edges, suggesting that disturbed roadsides serve as a vector for invasions into mountains. From the upcoming analyses of time series even more exciting results especially about range shifts can be expected. Implementing the protocol in more mountain regions globally would help to generate a more complete picture of how global change alters species distributions. This would inform conservation policy in mountain ecosystems, where some conservation policies remain poorly implemented.