1. Silicon mediated plant–herbivore interactions have gained increasing recognition and have now been studied in a wide range of species. Many studies have also considered accumulation of Si by plants as a process largely driven by geo-hydrological cycles. 2. To identify factors driving the water - plant Si - herbivore nexus we analysed the concentration of Si in fibrous tussock sedge (Carex appropinquata), the population density of the root vole (Microtus oeconomus) and the ground water level, over 11 years. 3. The largest influence of autumn Si concentration in leaves (Sileaf) was the level of the current year’s ground water table, which accounted for 13.3% of its variance. The previous year’s vole population density was weakly positively correlated with Sileaf and alone explained 9.5% of its variance. 4. The only variable found to have a positive, significant effect on autumn Si concentration in rhizomes (Sirhiz) was the current year spring water level explaining as much as 60.9% of its variance. 5. We conclude that the changes in Si concentration in fibrous tussock sedge are predominantly driven by hydrology, with vole population dynamics being secondary. Our results provide only partial support for the existence of plant-herbivore interactions, as we did not detect the significant effects of Si tussock concentration on the vole density dynamics. This was mainly due to low level of silification of sedges, which was insufficient to impinge herbivores. Future studies on plant–herbivore interactions should therefore mainly focus on identification of mechanisms and conditions allowing plants to accumulate silica at the levels sufficient to act as an anti-herbivore protection.