At present, the development of high-performance protein imprinted materials is still a research hotspot in the field of protein imprinting. Herein, anti-protein adsorption segment (CBMA)-assisted self-driven BSA surface imprinted fibers MTCFs@SIP@CBMA with high recognition selectivity are pioneered using the strategies of combining magnetic nanomaterial surface imprinting technique with amino-Michael addition. The special structure of the carrier MTCFs endows MTCFs@SIP@CBMA with magnetic performance and self-driven adsorption performance, which simplifies the separation process while improving the adsorption capacity and accelerating the adsorption rate. The adsorption capacity for BSA reached 395.26 mg/g within 30 min. The introduction of CBMA segments on the surface after imprinting by amino-Michael addition makes its polymer chain length and position controllable. Under the strongest anti-nonspecific adsorption effect, MTCFs@SIP@CBMA exhibit excellent specific identification to BSA from mixed proteins. Additionally, MTCFs@SIP@CBMA show considerable reusability. Therefore, MTCFs@SIP@CBMA are expected to be applied in efficient separation of proteins in biological samples.