AUTHOREA
Log in
Sign Up
Browse Preprints
LOG IN
SIGN UP
Essential Site Maintenance
: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at
[email protected]
in case you face any issues.
Xinxin Cao
Public Documents
1
Stabilization of a coupled wave equations with one localized non-regular fractional K...
Li Zhang
and 3 more
March 25, 2022
In this paper, we study the stabilization of a coupled wave system formed by one localized non-regular fractional viscoelastic damping of Kelvin-Voigt type and localized non-smooth coefficients. Our main aim is to prove that the C0-semigroup associated with this model is strong stability and decays polynomially at a rate of t−1. By introducing a new system to deal with fractional Kelvin-Voigt damping, we obtain a new equivalent augmented system, so as to show the well-posedness of the system based on Lumer-Phillips theorem. We achieve the strong stability for the C0-semigroup associated with this new model by using a general criteria of Arendt-Batty, and then turn out a polynomial energy decay rate of order t−1 with the help of a frequency domain approach.