This work considers a seeded fesoterodine fumarate (FF) cooling crystallization and presents the methodology and implementation of a real-time machine learning modeling-based predictive controller to handle batch-to-batch (B2B) parametric drift. Specifically, an autoencoder recurrent neural network-based model predictive controller (AERNN-MPC) is developed to optimize product yield, crystal size, and energy consumption while accounting for the physical constraints on cooling jacket temperature. Deviations in the kinetic parameters are considered in the closed-loop simulations to account for the B2B parametric drift, and two error-triggered online update mechanisms are proposed to address issues pertaining to the availability of real-time crystal property measurements and are incorporated into the AERNN-MPC to improve the model prediction accuracy. Closed-loop simulation results demonstrate that the proposed AERNN-MPC with online update, irrespective of the accessibility to real-time crystal property data, achieves a desired closed-loop performance in terms of maximizing product yield and minimizing energy consumption.