Since a polyvalent strategy has recently been assumed to be adopted by Deinococcus radiodurans that can generate various resistance against many different detrimental sources of oxidative damage (e.g. reactive oxygen species, heavy metal ions and ionising radiation), investigating more than one restorative metabolic activities and their interrelation of the very same entities of Deinococcus radiodurans is of great significance for exploring its polyextremophile nature, which will be insightful for obtaining fundamental generic insights into life sustainability. Herein, we apply mainly fluorescence microscopy and back reflection microscopy to visibly assess the respective activities of superoxide radical generation and silver ion metabolism for individual Deinococcus radiodurans. Strikingly, only a minority (<20%) of the bacteria which show low superoxide radical levels is revealed to exhibit considerable formation of silver nanoparticles whilst those containing more superoxide radicals all show minimum silver ion metabolism. The discovery of the strong negative correlation for the small subpopulation between the two visualised different metabolic activities not only provides direct experimental evidence in terms of bacterial functionality for the inferred survival regime of the extreme microbe, but also suggests a new way of chemically examining biology from the perspective of inter-functional relationship.