Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.

loading page

Effects of straw returning and nitrogen addition on soil quality and physicochemical characteristics of coastal saline soil: A field study of 4 consecutive wheat-maize cycles
  • +6
  • Wenjun Xie,
  • Hongjun Yang,
  • Jiangbao Xia,
  • Shoucai Wei,
  • Qian Cui,
  • Pengshuai Shao,
  • Jingkuan Sun,
  • Kaikai Dong,
  • Xingchao Qi
Wenjun Xie
Binzhou University

Corresponding Author:[email protected]

Author Profile
Hongjun Yang
Binzhou University
Author Profile
Jiangbao Xia
Binzhou University
Author Profile
Shoucai Wei
Binzhou University
Author Profile
Qian Cui
Binzhou University
Author Profile
Pengshuai Shao
Binzhou University
Author Profile
Jingkuan Sun
Binzhou University
Author Profile
Kaikai Dong
Binzhou University
Author Profile
Xingchao Qi
Binzhou University
Author Profile

Abstract

The effects of different straw returning and nitrogen addition levels on soil quality are important for proper coastal saline soil remediation. Two maize/wheat straw returning levels (1.0 × 10 4 kg ha -1 (2S) and 5.0 × 10 3 kg ha -1 (S)) and three inorganic nitrogen addition levels (300 kg ha -1 (N2), 150 kg ha -1 (N) and 75 kg ha -1 (N1/2))—were studied, with 150 kg ha -1 inorganic nitrogen and without straw addition treatment as the control (CK), to elucidate the response of soil physical and chemical properties to the two factors. Dry-sieving technique was applied to fractionate the soils into silt-plus-clay particles (< 0.053 mm, CS), microaggregates (0.053–0.25 mm, MI), small macroaggregates (0.25–2.0 mm, SM), and large macroaggregates (> 2 mm, LM). After four consecutive wheat-maize cycles, different straw and N fertilizer treatments obviously decreased the salinity contents, increased the total nutrient contents, and optimized the soil structure of the saline soil. The saline soil reclamation effects showed significant distinctions among the different straw and N fertilizer treatments. The 2SN2 treatment displayed the greatest effects in regard to decreasing salinity, increasing the total soil nutrient contents and optimizing the soil structure, which resulted in the best remediation effect. Straw returning play a major role in decreasing soil salinity and enhancing saline soil aggregate formation. N fertilizer addition supplies rich nutrients for straw decomposition, and promotes soil microbial growth and reproduction, which brought about C sequestration in coastal saline soil. During the coastal saline soil remediation process in the Yellow River Delta, it is suggested to prioritize straw returning and moderate N fertilizer addition, and live together with moderate P fertilizer application.