An economical and highly uranium extraction from seawater remains a crucial task for energy sources and environmental safety. Aiming for improving the mass transfer rate of uranium from seawater, a new synthetic strategy was adopted to synthesize 2D-open channel microporous bio-adsorbent for uranium extraction from seawater. Herein, a vapor phase modification approach was adopted to graft divinylbenzene(DVB), and polyacrylonitrile(AN) onto the surfaces of microporous frameworks via a free radical polymerization method. The post-synthetic functionalization was carried out by hydrothermal process, where amidoxime groups are structure-directing agents to trap uranium. Further, amidoxime groups not only enhanced hydrophilicity but also adjusts adsorbents pKa. AO-Fc faces minimum interference of competing ions and achieves a high uranium adsorption capacity of 8.57±0.02 and 409±1 mg/g in seawater and simulated solution. Despite its stable structure, AO-Fc exhibits a long life span and negligible weight loss revealed AO-Fc could be applied as a potential adsorbent for radionuclides