The core of bioprinting related research aims to reduce the gap between ex vivo cell cultures and in vivo cellular tissue models to further its application within the biomedical field. While additive manufacturing is touted as disruptive technology, bioprinter equipment costs exceed limited resource budgets of many research laboratories restricting the scope for further development for biomedical research and potential medical application. In line with this, a relatively low-cost bioprinter (SidneV1) was successfully designed and manufactured using a low-cost, commercially available FDM Delta 3D printer as a prototype base with a successfully custom designed and manufactured micro-extrusion printhead. Printing accuracies assessed were 65% (for width measurements) and 64% (for height measurements). This study aimed to demonstrate a way to achieve low-cost bioprinting and hopefully pave the way for future system modifications and refinements such that this technology becomes more accessible to under-funded research groups around the world. Although these findings are preliminary, further optimization of printing parameters, bioink formulations and sterilization techniques will allow for the engineering of viable, physiologically relevant tissue models using low-cost bioprinting technology.