Sub-kilometer processes are critical to the physics of aerosol-cloud interaction but have been dependent on parameterizations in global model simulations. We thus report the strength of aerosol-cloud interaction in the Ultra-Parameterized Community Atmosphere Model (UPCAM), a multiscale climate model that uses coarse exterior resolution to embed explicit cloud resolving models with enough resolution (250-m horizontal, 20-m vertical) to quasi-resolve sub-kilometer eddies. To investigate the impact on aerosol-cloud interactions, UPCAMâ\euro™s simulations are compared to a coarser multi-scale model with 3 km horizontal resolution. UPCAM produces cloud droplet number concentrations ($N_\mathrm{d}$) and cloud liquid water path (LWP) values that are higher than the coarser model but equally plausible compared to observations. Our analysis focuses on the Northern Hemisphere midlatitude oceans, where historical aerosol increases have been largest. We find similarities in the overall radiative forcing from aerosol-cloud interactions in the two models, but this belies fundamental underlying differences. The radiative forcing from increases in LWP is weaker in UPCAM, whereas the forcing from increases in $N_\mathrm{d}$ is larger. Surprisingly, the weaker LWP increase is not due to a weaker increase in LWP in raining clouds, but a combination of weaker increase in LWP in non-raining clouds and a smaller fraction of raining clouds in UPCAM. The implication is that as global modeling moves towards finer than storm-resolving grids, nuanced model validation of ACI statistics conditioned on the existence of precipitation and good observational constraints on the baseline probability of precipitation will become key for tighter constraints and better conceptual understanding.

Camille Risi

and 2 more

The isotopic composition of water vapor (e.g. its Deuterium content) evolves along the water cycle as phase changes are associated with isotopic fractionation. In the tropics, it is especially sensitive to convective processes. Consequently the isotopic composition of precipitation recorded in paleoclimate archives has significantly contributed to the reconstruction of past hydrological changes. It has also been suggested that observed isotopic composition of water vapor could help better understand convective processes and evaluate their representation in climate models. Yet, water isotopes remain rarely used beyond the isotopic community to answer today’s pressing climate questions. A prerequisite to better assess the strengths and weaknesses of the isotopic tool is to better understand what controls spatio-temporal variations in water vapor isotopic composition through the tropical atmosphere. A first step towards this better understanding is to understand what controls the isotopic composition of the sub-cloud layer water vapor over the ocean. Isotopic measurements show that the water vapor is the most enriched in trade-wind regions, and becomes more depleted as precipitation increases. To understand this pattern, we use global simulations with the isotope-enabled general circulation model LMDZ, large-eddy simulation in radiative-convective equilibrium and with large-scale ascent or descent, with the isotope-enabled model SAM and simple analytical models. We show that increased precipitation rate is associated with increased isotopic depletion if it is associated with stronger large-scale ascent, but with decreased isotopic depletion if it is associated with warmer surface temperature. As large-scale ascent increases, the isotopic vertical gradient in the lower troposphere is steeper, which makes downdrafts and updrafts more efficient in depleting the sub-cloud layer water vapor. The steeper gradient is caused mainly by the larger quantity of snow falling down to the melting level, forming rain whose evaporation depletes the water vapor.