Shock waves in collisionless plasmas rely on kinetic processes to convert the primary incident bulk flow energy into thermal energy. That conversion is initiated within a thin transition layer but may continue well into the downstream region. At the Earth’s bow shock, the region downstream of shock locations where the interplanetary magnetic field is nearly parallel to the shock normal is highly turbulent. We study the distribution of thin current events in this magnetosheath. Quantification of the energy dissipation rate made by the MMS spacecraft shows that these isolated intense currents are distributed uniformly throughout the magnetosheath and convert a significant fraction (5%-11%) of the energy flux incident at the bow shock.