Krypton-81 dating provides new insights into the timing, mechanisms, and extent of meteoric flushing versus retention of saline fluids in the subsurface in response to changes in geologic and/or climatic forcings over 50 ka to 1.2 Ma year timescales. Remnant Paleozoic seawater-derived brines (2-2.5 km depth) associated with evaporites in the Paradox Basin, Colorado Plateau, are beyond the 81Kr dating range (>1.2 Ma) and have likely been preserved due to negative fluid buoyancy and low permeability. 81Kr dating of formation waters above the evaporites indicates topographically-driven meteoric recharge (0.03-0.8 Ma) and salt dissolution since the Late Pleistocene. Formation waters below the evaporites, in basal aquifers, contain relatively young meteoric water components (0.4-1.1 Ma based on 81Kr) that partially flushed remnant brines and dissolved evaporites. We demonstrate that recent, rapid denudation of the Colorado Plateau (<4-10 Ma) activated deep, basinal-scale flow systems as recorded in 81Kr groundwater age distributions.