You need to sign in or sign up before continuing. dismiss

Lucas Lange

and 11 more

Observations of the South Polar Residual Cap suggest a possible erosion of the cap, leading to an increase of the global mass of the atmosphere. We test this assumption by making the first comparison between Viking 1 and InSight surface pressure data that have been recorded with ~40 years of difference. Such a comparison also allows us to determine changes in the dynamics of the seasonal ice caps between these two periods. To do so, we first had to recalibrate the InSight pressure data because of their unexpected sensitivity to the sensor temperature. Then, we had to design a procedure to compare distant pressure measurements. We propose two surface pressure interpolation methods at the local and global scale to do the comparison. The comparison of Viking and InSight seasonal surface pressure variations does not show major changes in the CO2 cycle. Such conclusions are also supported by an analysis of the Mars Science Laboratory (MSL) pressure data. Further comparisons with images of the south seasonal cap taken by the Viking 2 orbiter and MARCI camera do not display significant changes in the dynamic of this cap within ~40 years. Only a possible larger extension of the North Cap after the global storm of MY 34 is observed, but the physical mechanisms behind this anomaly are not well determined. Finally, the first comparison of MSL and InSight pressure data suggests a pressure deficit at Gale crater during southern summer, possibly resulting from a large presence of dust suspended within the crater.

Ari Koeppel

and 8 more

Despite nearly complete coverage of the Martian surface with thermal infrared datasets, uncertainty remains over a wide range of observed thermal trends. Combinations of grain sizes, packing geometry, cementation, volatile abundances, subsurface heterogeneity, and sub-pixel horizontal mixing lead to multiple scenarios that would produce a given thermal response at the surface. Sedimentary environments on Earth provide a useful natural laboratory for studying how the interplay of these traits control diurnal temperature curves and identifying the depositional contexts those traits appear in, which can be difficult to model or simulate indoors. However, thermophysical studies at Mars-analog sites are challenged by distinct controls present on Earth, such as soil moisture and atmospheric density. In this work, as part of a broader thermophysical analog study, we developed a model for determining thermal properties of in-place sediments on Earth from thermal imagery that considers those additional controls. The model uses Monte Carlo simulations to fit calibrated surface temperatures and identify the most probable dry thermal conductivity as well as any potential subsurface layering. The program iterates through a one-dimensional surface energy balance on the upper boundary of a soil column and calculates subsurface heat transfer with temperature-dependent parameters. The greatest sources of uncertainty stem from the complexity of how thermal conductivity scales with water abundance and from surface-atmosphere heat exchange, or sensible heat. Using data from a 72-hr campaign at a basaltic eolian site in the San Francisco Volcanic Field, we tested multiple models for how dry soil components and water contribute to thermal conductivity and multiple approaches to estimating sensible heat from field measurements. Field measurements include: upwelling and downwelling radiation, air temperature, relative humidity, wind speed, and soil moisture, all collected from a ground station, as well as UAV-derived surface geometries. By mitigating Earth-specific uncertainty and isolating the controls that are most relevant to Martian sediments, we can then validate those controls with in situ thermophysical probe measurements and ultimately improve interpretations of thermal data for the Martian surface.

Lucas Lange

and 2 more

Before dawn on the dustiest regions of Mars, surfaces measured at or below ∼ 148 K are common. Thermodynamics principles indicate that these terrains must be associated with the presence of CO2 frost, yet visible wavelength imagery does not display any ice signature. We interpret this systematic absence as an indication of CO2 crystal growth within the surficial regolith, not on top of it, forming hard-to-distinguish intimate mixtures of frost and dust, i.e., dirty frost. This particular ice/regolith relationship unique to the low thermal inertia regions is enabled by the large difference in size between individual dust grains and the peak thermal emission wavelength of any material nearing 148 K (1-2 μm vs. 18 μm), allowing radiative loss (and therefore ice formation) to occur deep within the pores of the ground, below several layers of grains. After sunrise, sublimation-driven winds promoted by direct insolation and conduction create an upward drag within the surficial regolith that can be comparable in strength to gravity and friction forces combined. This drag displaces individual grains, possibly preventing their agglomeration, induration, and compaction, and can potentially initiate or sustain downslope mass movement such as slope streaks. If confirmed, this hypothesis introduces a new form of CO2-driven geomorphological activity occurring near the equator on Mars and explains how large units of mobile dust are currently maintained at the surface in an otherwise soil-encrusting world.