Warren P Smith

and 17 more

Chemistry transport models (CTMs) are essential tools for characterizing and predicting the role of atmospheric composition and chemistry in Earth’s climate system. This study demonstrates the use of airborne in situ observations to diagnose the representation of atmospheric composition by global CTMs. Process-based diagnostics are developed which minimize the spatial and temporal sampling differences between airborne in situ measurements and CTM grid points. The developed diagnostics make use of dynamical and chemical vertical coordinates as a means of highlighting areas where focused model improvement is needed. The chosen process is the chemical impact of the Asian summer monsoon (ASM), where deep convection serves a unique pathway for rapid transport of surface emissions and pollutants to the stratosphere. Two global CTM configurations are examined for their representation of the ASM upper troposphere and lower stratosphere (UTLS), using airborne observations collected over south Asia. Application of the developed diagnostics to the CTMs reveals the limitations of zonally-averaged surface boundary conditions for species with sufficiently short tropospheric lifetimes, and that species whose stratospheric loss rates are dominated by photolysis have excellent agreement compared to that observed. Overall, the diagnostics demonstrate the strength of airborne observations toward improving model predictions, and highlight the utility of highly-resolved CTMs to improve the understanding of reactive transport of anthropogenic pollutants to the stratosphere.

Michael Weimer

and 7 more

Many chemical processes depend non-linearly on temperature. Gravity-wave-induced temperature perturbations have been previously shown to affect atmospheric chemistry, but accounting for this process in chemistry-climate models has been a challenge because many gravity waves have scales smaller than the typical model resolution. Here, we present a method to account for subgrid-scale orographic gravity-wave-induced temperature perturbations on the global scale for the Whole Atmosphere Community Climate Model (WACCM). The method consists of deriving the temperature perturbation amplitude $\hat{T}$ consistent with the model’s subgrid-scale gravity wave parametrization, and imposing $\hat{T}$ as a sinusiodal temperature perturbation in the model’s chemistry solver. Because of limitations in the gravity wave parameterization, scaling factors may be necessary to maintain a realistic wave amplitude. We explore scaling factors between 0.6 and 1 based on comparisons to altitude-dependent $\hat{T}$ distributions in two observational datasets. We probe the impact on the chemistry from the grid-point to global scales, and show that the parametrization is able to represent mountain wave events as reported by previous literature. The gravity waves for example lead to increased surface area densities of stratospheric aerosols. This in turn increases chlorine activation, with impacts on the associated chemical composition. We obtain large local changes in some chemical species (e.g., active chlorine, NOx, N2O5) which are likely to be important for comparisons to airborne or satellite observations, but find that the changes to ozone loss are more modest. This approach enables the chemistry-climate modeling community to account for subgrid-scale gravity wave temperature perturbations in a consistent way.
Simulating whole atmosphere dynamics, chemistry, and physics is computationally expensive. It can require high vertical resolution throughout the middle and upper atmosphere, as well as a comprehensive chemistry and aerosol scheme coupled to radiation physics. An unintentional outcome of the development of one of the most sophisticated and hence computationally expensive model configurations is that it often excludes a broad community of users with limited computational resources. Here, we analyze two configurations of the Community Earth System Model Version 2, Whole Atmosphere Community Climate Model Version 6 (CESM2(WACCM6)) with simplified “middle atmosphere” chemistry at nominal 1 and 2 degree horizontal resolutions. Using observations, a reanalysis, and direct model comparisons, we find that these configurations generally reproduce the climate, variability, and climate sensitivity of the 1 degree nominal horizontal resolution configuration with comprehensive chemistry. While the background stratospheric aerosol optical depth is elevated in the middle atmosphere configurations as compared to the comprehensive chemistry configuration, it is comparable between all configurations during volcanic eruptions. For any purposes other than those needing an accurate representation of tropospheric organic chemistry and secondary organic aerosols, these simplified chemistry configurations deliver reliable simulations of the whole atmosphere that require 35% to 86% fewer computational resources at nominal 1 and 2 degree horizontal resolution, respectively.

Daniele Minganti

and 11 more

The Brewer-Dobson Circulation (BDC) determines the distribution of long-lived trac- ers in the stratosphere; therefore, their changes can be used to diagnose changes in the BDC. We evaluate decadal (2005-2018) trends of nitrous oxide (N2O) in two versions of the Whole Atmosphere Chemistry-Climate Model (WACCM) by comparing them with measurements from four Fourier transform infrared (FTIR) ground-based instruments, the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and with a chemistry-transport model (CTM) driven by four different reanalyses. The limited sensitivity of the FTIR instruments can hide negative N2O trends in the mid-stratosphere because of the large increase in the lowermost stratosphere. When applying ACE-FTS measurement sampling on model datasets, the reanalyses from the European Centre for Medium Range Weather Forecast (ECMWF) compare best with ACE-FTS, but the N2O trends are consistently exaggerated. The N2O trends obtained with WACCM disagree with those obtained from ACE-FTS, but the new WACCM version performs better than the previous above the Southern Hemisphere in the stratosphere. Model sensitivity tests show that the decadal N2O trends reflect changes in the stratospheric transport. We further investigate the N2 O Transformed Eulerian Mean (TEM) budget in WACCM and in the CTM simulation driven by the latest ECMWF reanalysis. The TEM analysis shows that enhanced advection affects the stratospheric N2O trends in the Tropics. While no ideal observational dataset currently exists, this model study of N2O trends still provides new insights about the BDC and its changes because of the contribution from relevant sensitivity tests and the TEM analysis.

Olaf Morgenstern

and 16 more