Joseph Berberich

and 19 more

Refractory black carbon (rBC) is a primary aerosol species, produced through incomplete combustion, that absorbs sunlight and contributes to positive radiative forcing. The overall climate effect of rBC depends on its spatial distribution and atmospheric lifetime, both of which are impacted by the efficiency with which rBC is transported or removed by convective systems. These processes are poorly constrained by observations. It is especially interesting to investigate rBC transport efficiency through the Asian Summer Monsoon (ASM) since this meteorological pattern delivers vast quantities of boundary layer air from Asia, where rBC emissions are high, to the upper troposphere/lower stratosphere (UT/LS) where the lifetime of rBC is expected to be long. Here we present in-situ observations of rBC made during the Asian Summer Monsoon Chemistry and Climate Impact Project (ACCLIP) of summer, 2022. We use observed relationships between rBC and CO in ASM outflow to show that rBC is removed nearly completely (>98%) from uplifted air, and that rBC concentrations in ASM outflow are statistically indistinguishable from the UT/LS background. We compare observed rBC and CO concentrations to those expected based on two chemical transport models and find that the models reproduce CO to within a factor of 2 at all altitudes while rBC is overpredicted by a factor of 20-100 at altitudes associated with ASM outflow. We find that the rBC particles in recently convected air have thinner coatings than those found in the UTLS background, suggesting non-zero transport of rBC number that is not relevant to concentration.

Shaddy Ahmed

and 15 more

Reactive chlorine and bromine species emitted from snow and aerosols can significantly alter the oxidative capacity of the polar boundary layer. However, halogen production mechanisms from snow remain highly uncertain, making it difficult for most models to include descriptions of halogen snow emissions and to understand the impact on atmospheric chemistry. We investigate the influence of Arctic halogen emissions from snow on boundary layer oxidation processes using a one-dimensional atmospheric chemistry and transport model (PACT-1D). To understand the combined impact of snow emissions and boundary layer dynamics on atmospheric chemistry, we model \ch{Cl2} and \ch{Br2} primary emissions from snow and include heterogeneous recycling of halogens on both snow and aerosols. We focus on a two-day case study from the 2009 Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) campaign at Utqia\.gvik, Alaska. The model reproduces both the diurnal cycle and high quantity of \ch{Cl2} observed, along with the measured concentrations of \ch{Br2}, \ch{BrO}, and \ch{HOBr}. Due to the combined effects of emissions, recycling, vertical mixing, and atmospheric chemistry, reactive chlorine is confined to the lowest 15 m of the atmosphere, while bromine impacts chemistry up to the boundary layer height. Upon including halogen emissions and recycling, the concentration of \ch{HO_x} (\ch{HO_x} = \ch{OH}+\ch{HO2}) at the surface increases by as much as a factor of 30 at mid-day. The change in \ch{HO_x} due to halogen chemistry, as well as chlorine atoms derived from snow emissions, significantly reduce volatile organic compound (VOC) lifetimes within a shallow layer near the surface.