Abigail S. L. Lewis

and 8 more

Water level drawdowns are increasingly common in lakes and reservoirs worldwide as a result of both climate change and water management. Drawdowns can have direct effects on physical properties of a waterbody (e.g., by altering stratification and light dynamics), which can interact to modify the waterbody’s biology and chemistry. However, the ecosystem-level effects of drawdown remain poorly characterized in small, thermally-stratified reservoirs, which are common in many regions of the world. Here, we intensively monitored a small eutrophic reservoir for two years, including before, during, and after a month-long drawdown that reduced total reservoir volume by 36%. During drawdown, stratification strength (maximum buoyancy frequency) and surface phosphate concentrations both increased, contributing to a substantial surface phytoplankton bloom. The peak in phytoplankton biomass was followed by cascading changes in surface water chemistry associated with bloom degradation, with sequential peaks in dissolved organic carbon, dissolved carbon dioxide, and ammonium concentrations that were up to an order of magnitude higher than the previous year. Dissolved oxygen concentrations substantially decreased in the surface waters during drawdown (to 41% saturation), which was associated with increased total iron and manganese concentrations. Combined, our results illustrate how changes in water level can have cascading effects on coupled physical, chemical, and biological processes. As climate change and water management continue to increase the frequency of drawdowns in lakes worldwide, our results highlight the importance of characterizing how water level variability can alter complex in-lake ecosystem processes, thereby affecting water quality.

Abigail Lewis

and 7 more

Freshwater lakes and reservoirs play a disproportionate role in the global organic carbon (OC) budget, as active sites for carbon processing and burial. Associations between OC and iron (Fe) are hypothesized to contribute substantially to the stabilization of OC in sediment, but the magnitude of freshwater Fe-OC complexation remains unresolved. Moreover, global declines in bottom-water oxygen concentrations have the potential to alter OC and Fe cycles in multiple ways, and the net effects of low-oxygen (hypoxic) conditions on OC and Fe are poorly characterized. Here, we measured the pool of Fe-bound OC (Fe-OC) in surficial sediments from two eutrophic reservoirs, and we paired whole-ecosystem experiments with sediment incubations to determine the effects of hypoxia on OC and Fe cycling over multiple timescales. Our experiments demonstrated that short (2–4 week) periods of hypoxia can increase aqueous Fe and OC concentrations while decreasing OC and Fe-OC in surficial sediment by 30%. However, exposure to seasonal hypoxia over multiple years was associated with a 57% increase in sediment OC and no change in sediment Fe-OC. These results suggest that the large sediment Fe-OC pool (~30% of sediment OC in both reservoirs) contains both oxygen-sensitive and oxygen-insensitive fractions, and over multiannual timescales OC respiration rates may play a more important role in in determining the effect of hypoxia on sediment OC than Fe-OC dissociation. Consequently, we anticipate that global declines in oxygen concentrations will alter OC and Fe cycling, with the direction and magnitude of effects dependent upon the duration of hypoxia.

Mary E Lofton

and 3 more

Near-term freshwater forecasts, defined as sub-daily to decadal future predictions of a freshwater variable with quantified uncertainty, are urgently needed to improve water quality management as freshwater ecosystems exhibit greater variability due to global change. Shifting baselines in freshwater ecosystems due to land use and climate change prevent managers from relying on historical averages for predicting future conditions, necessitating near-term forecasts to mitigate freshwater risks to human health and safety (e.g., flash floods, harmful algal blooms). To assess the current state of freshwater forecasting and identify opportunities for future progress, we synthesized freshwater forecasting papers published in the past five years. We found that freshwater forecasting is currently dominated by near-term forecasts of water quantity and that near-term water quality forecasts are fewer in number and in early stages of development (i.e., non-operational), despite their potential as important preemptive decision support tools. We contend that more freshwater quality forecasts are critically needed, and that near-term water quality forecasting is poised to make substantial advances based on examples of recent progress in forecasting methodology, workflows, and end user engagement. For example, current water quality forecasting systems can predict water temperature, dissolved oxygen, and algal bloom/toxin events five days ahead with reasonable accuracy. Continued progress in freshwater quality forecasting will be greatly accelerated by adapting tools and approaches from freshwater quantity forecasting (e.g., machine learning modeling methods). In addition, future development of effective operational freshwater quality forecasts necessitates substantive engagement of end users throughout the forecast process, funding, and training opportunities. Looking ahead, near-term forecasting provides a hopeful future for freshwater management in the face of increased variability and risk due to global change, and we encourage the freshwater scientific community to incorporate forecasting approaches in water quality research and management.

Whitney M Woelmer

and 4 more

TITLE : Embedding communication concepts in forecasting training increases students’ understanding of ecological uncertainty Submitted as an Article to Ecosphere , Eco-Education TrackAUTHOR LIST: Whitney M. Woelmera*, Tadhg N. Moorea,b11Present address: School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland, Mary E. Loftona, R. Quinn Thomasa,b, and Cayelan C. CareyaaDepartment of Biological Sciences, Virginia Tech, Blacksburg, VA, USAbDepartment of Forest Resources and Environmental Conservation, Virginia Tech, Blacksburg, VA, USA*Corresponding author: [email protected] RESEARCH STATEMENT : This study collected and analyzed human subject data and was approved by the Virginia Tech Institutional Review Board (19-669) and the Carleton College Institutional Review Board (19-20 065). Data for this study have been anonymized and aggregated and can be found at Woelmer (2023) along with all code to reproduce the analysis and figures within this study.Woelmer, W. 2023. Wwoelmer/module8_public_ecosphere: Ecosphere submission March 2023 (v1.0). Zenodo. https://doi.org/10.5281/zenodo.7733965KEYWORDS : active learning, ecology education, ecological forecast, Macrosystems EDDIE, R Shiny, teaching modules, translational ecology, undergraduate curricula, visualization literacyABSTRACT : Communicating and interpreting uncertainty in ecological model predictions is notoriously challenging, motivating the need for new educational tools which introduce ecology students to core concepts in uncertainty communication. Ecological forecasting, an emerging approach to estimate future states of ecological systems with uncertainty, provides a relevant and engaging framework for introducing uncertainty communication to undergraduate students, as forecasts can be used as decision support tools for addressing real-world ecological problems and are inherently uncertain. To provide critical training on uncertainty communication and introduce undergraduate students to the use of ecological forecasts for guiding decision-making, we developed a hands-on teaching module within the Macrosystems EDDIE (Environmental Data-Driven Inquiry and Exploration; MacrosystemsEDDIE.org) educational program. Our module used an active learning approach by embedding forecasting activities in an R Shiny application to engage introductory students in data science, ecological modeling, and forecasting without needing advanced computational or programming skills. Pre- and post-module assessment data from >250 undergraduate ecology students indicate that the module significantly increased students’ ability to interpret forecast visualizations with uncertainty, identify different ways to communicate forecast uncertainty for diverse users, and correctly define ecological forecasting terms. Specifically, students were more likely to describe visual, numeric, and probabilistic methods of uncertainty communication following module completion. Students were also able to identify more benefits of ecological forecasting following module completion, with the key benefits of using forecasts for prediction and decision-making most commonly described. These results show promise for introducing ecological model uncertainty, data visualizations, and forecasting into undergraduate ecology curricula via software-based learning, which can increase students’ ability to engage and understand complex ecological concepts.

Heather L Wander

and 5 more

Ecosystems around the globe are experiencing increased variability due to land use and climate change. In response, ecologists are increasingly using near-term, iterative ecological forecasts to predict how ecosystems will change in the future. To date, many near-term, iterative forecasting systems have been developed using high temporal frequency (minute to hourly resolution) data streams for assimilation. However, this approach may be cost-prohibitive or impossible for forecasting ecological variables that lack high-frequency sensors or have high data latency (i.e., a delay before data are available for modeling after collection). To explore the effects of data assimilation frequency on forecast skill, we developed water temperature forecasts for a eutrophic drinking water reservoir and conducted data assimilation experiments by selectively withholding observations to examine the effect of data availability on forecast accuracy. We used  in-situ sensors, manually collected data, and a calibrated water quality ecosystem model driven by forecasted weather data to generate future water temperature forecasts using FLARE (Forecasting Lake And Reservoir Ecosystems), an open-source water quality forecasting system. We tested the effect of daily, weekly, fortnightly, and monthly data assimilation on the skill of 1 to 35-day-ahead water temperature forecasts. We found that forecast skill varied depending on the season, forecast horizon, depth, and data assimilation frequency, but overall forecast performance was high, with a mean 1-day-ahead forecast root mean square error (RMSE) of 0.94°C, mean 7-day RMSE of 1.33°C, and mean 35-day RMSE of 2.15°C. Aggregated across the year, daily data assimilation yielded the most skillful forecasts at 1-7-day-ahead horizons, weekly data assimilation resulted in the most skillful forecasts at 8-35-day-ahead horizons. Within a year, daily to fortnightly data assimilation substantially outperformed monthly data assimilation in the stratified summer period, whereas all data assimilation frequencies resulted in skillful forecasts across depths in the mixed spring/autumn periods for shorter forecast horizons. Our results suggest that lower-frequency data (i.e., weekly) may be adequate for developing accurate forecasts in some applications, further enabling the development of forecasts broadly across ecosystems and ecological variables without high-frequency sensor data.

Cayelan C. Carey

and 11 more

Oxygen availability is decreasing in many lakes and reservoirs worldwide, raising the urgency for understanding how anoxia (low oxygen) affects coupled biogeochemical cycling, which has major implications for water quality, food webs, and ecosystem functioning. Although the increasing magnitude and prevalence of anoxia has been documented in freshwaters globally, the challenges of disentangling oxygen and temperature responses have hindered assessment of the effects of anoxia on carbon, nitrogen, and phosphorus concentrations, stoichiometry (chemical ratios), and retention in freshwaters. The consequences of anoxia are likely severe and may be irreversible, necessitating ecosystem-scale experimental investigation of decreasing freshwater oxygen availability. To address this gap, we devised and conducted REDOX (the Reservoir Ecosystem Dynamic Oxygenation eXperiment), an unprecedented, seven-year experiment in which we manipulated and modeled bottom-water (hypolimnetic) oxygen availability at the whole-ecosystem scale in a eutrophic reservoir. Seven years of data reveal that anoxia significantly increased hypolimnetic carbon, nitrogen, and phosphorus concentrations and altered elemental stoichiometry by factors of 2-5 relative to oxic periods. Importantly, prolonged summer anoxia increased nitrogen export from the reservoir by six-fold and changed the reservoir from a net sink to a net source of phosphorus and organic carbon downstream. While low oxygen in freshwaters is thought of as a response to land use and climate change, results from REDOX demonstrate that low oxygen can also be a driver of major changes to freshwater biogeochemical cycling, which may serve as an intensifying feedback that increases anoxia in downstream waterbodies. Consequently, as climate and land use change continue to increase the prevalence of anoxia in lakes and reservoirs globally, it is likely that anoxia will have major effects on freshwater carbon, nitrogen, and phosphorus budgets as well as water quality and ecosystem functioning.

Mary Lofton

and 7 more

1. Freshwater phytoplankton communities are currently experiencing multiple global change stressors, including increasing frequency and intensity of storms. An important mechanism by which storms affect lake and reservoir phytoplankton is by altering the water column’s thermal structure (e.g., changes to thermocline depth). However, little is known about the effects of intermittent thermocline deepening on phytoplankton community vertical distribution and composition or the consistency of phytoplankton responses to varying frequency of these disturbances over multiple years. 2. We conducted whole-ecosystem thermocline deepening manipulations in a small reservoir. We used an epilimnetic mixing system to experimentally deepen the thermocline in two summers, simulating potential responses to storms, and did not manipulate thermocline depth in two succeeding summers. We collected weekly depth profiles of water temperature, light, nutrients, and phytoplankton biomass as well as discrete samples to assess phytoplankton community composition. We then used time-series analysis and multivariate ordination to assess the effects of intermittent thermocline deepening due to both our experimental manipulations and naturally-occurring storms on phytoplankton community structure. 3. We observed inter-annual and intra-annual variability in phytoplankton community response to thermocline deepening. We found that peak phytoplankton biomass was significantly deeper in years with a higher frequency of thermocline deepening events (i.e., years with both manipulations and natural storms) due to weaker thermal stratification and deeper depth distributions of soluble reactive phosphorus. Furthermore, we found that the depth of peak phytoplankton biomass was linked to phytoplankton community composition, with certain taxa being associated with deep or shallow biomass peaks, often according to functional traits such as optimal growth temperature, mixotrophy, and low-light tolerance. 4. Our results demonstrate that abrupt thermocline deepening due to water column mixing affects both phytoplankton depth distribution and community structure via alteration of physical and chemical gradients. In addition, our work supports previous research that phytoplankton depth distribution and community composition interact at inter-annual and intra-annual timescales. 5. Variability in the inter-annual and intra-annual responses of phytoplankton to abrupt thermocline deepening indicates that antecedent conditions and the seasonal timing of surface water mixing may mediate these responses. Our findings emphasize that phytoplankton depth distributions are sensitive to global change stressors and effects on depth distributions should be taken into account when predicting phytoplankton responses to increased storms under global change.

Whitney Woelmer

and 6 more

Globally-significant quantities of carbon (C), nitrogen (N), and phosphorus (P) enter freshwater reservoirs each year. These inputs can be buried in sediments, respired, taken up by organisms, emitted to the atmosphere, or exported downstream. While much is known about reservoir-scale biogeochemical processing, less is known about spatial and temporal variability of biogeochemistry within a reservoir along the continuum from inflowing streams to the dam. To address this gap, we examined longitudinal variability in surface water biogeochemistry (C, N, and P) in two small reservoirs throughout a thermally-stratified season. We sampled total and dissolved fractions of C, N, and P, and chlorophyll-a from each reservoir’s major inflows to the dam. We found that time was generally a more important driver of heterogeneity in biogeochemical concentrations than space. However, dissolved nutrient and organic carbon concentrations had high site-to-site variability within both reservoirs, potentially as a result of shifting biological activity or environmental conditions. When considering spatially explicit processing, we found that certain locations within the reservoir, most often the stream-reservoir interface, acted as ‘hotspots’ of change in biogeochemical concentrations. Our study suggests that spatially explicit metrics of biogeochemical processing could help constrain the role of reservoirs in C, N, and P cycles in the landscape. Ultimately, our results highlight that biogeochemical heterogeneity in small reservoirs is driven more by seasonality than longitudinal spatial gradients, and that some sites within reservoirs play critically important roles in whole-ecosystem biogeochemical processing.

Whitney M Woelmer

and 5 more

As climate and land use increase the variability of many ecosystems, forecasts of ecological variables are needed to inform management and use of ecosystem services. In particular, forecasts of phytoplankton would be especially useful for drinking water management, as phytoplankton populations are exhibiting greater fluctuations due to human activities. While phytoplankton forecasts are increasing in number, many questions remain regarding the optimal model time step (the temporal frequency of the forecast model output), time horizon (the length of time into the future a prediction is made) for maximizing forecast performance, as well as what factors contribute to uncertainty in forecasts and their scalability among sites. To answer these questions, we developed near-term, iterative forecasts of phytoplankton 1 to 14 days into the future using forecast models with three different time steps (daily, weekly, fortnightly), that included a full uncertainty partitioning analysis at two drinking water reservoirs. We found that forecast accuracy varies with model time step and forecast horizon, and that forecast models can outperform null estimates under most conditions. Weekly and fortnightly forecasts consistently outperformed daily forecasts at 7-day and 14-day horizons, a trend which increased up to the 14-day forecast horizon. Importantly, our work suggests that forecast accuracy can be increased by matching the forecast model time step to the forecast horizon for which predictions are needed. We found that model process uncertainty was the primary source of uncertainty in our phytoplankton forecasts over the forecast period, but parameter uncertainty increased during phytoplankton blooms and when scaling the forecast model to a new site. Overall, our scalability analysis shows promising results that simple models can be transferred to produce forecasts at additional sites. Altogether, our study advances our understanding of how forecast model time step and forecast horizon influence the forecastability of phytoplankton dynamics in aquatic systems, and adds to the growing body of work regarding the predictability of ecological systems broadly.

Mary E. Lofton

and 14 more

Near-term ecological forecasts provide resource managers advance notice of changes in ecosystem services, such as fisheries stocks, timber yields, or water and air quality. Importantly, ecological forecasts can identify where uncertainty enters the forecasting system, which is necessary to refine and improve forecast skill and guide interpretation of forecast results. Uncertainty partitioning identifies the relative contributions to total forecast variance (uncertainty) introduced by different sources, including specification of the model structure, errors in driver data, and estimation of initial state conditions. Uncertainty partitioning could be particularly useful in improving forecasts of high-density cyanobacterial events, which are difficult to predict and present a persistent challenge for lake managers. Cyanobacteria can produce toxic or unsightly surface scums and advance warning of these events could help managers mitigate water quality issues. Here, we calibrate fourteen Bayesian state-space models to evaluate different hypotheses about cyanobacterial growth using data from eight summers of weekly cyanobacteria density samples in an oligotrophic (low nutrient) lake that experiences sporadic surface scums of the toxin-producing cyanobacterium, Gloeotrichia echinulata. We identify dominant sources of uncertainty for near-term (one-week to four-week) forecasts of G. echinulata densities over two years. Water temperature was an important predictor in calibration and at the four-week forecast horizon. However, no environmental covariates improved over a simple autoregressive (AR) model at the one-week horizon. Even the best fit models exhibited large variance in forecasted cyanobacterial densities and often did not capture rare peak density occurrences, indicating that significant explanatory variables in calibration are not always effective for near-term forecasting of low-frequency events. Uncertainty partitioning revealed that model process specification and initial conditions uncertainty dominated forecasts at both time horizons. These findings suggest that observed densities result from both growth and movement of G. echinulata, and that imperfect observations as well as spatial misalignment of environmental data and cyanobacteria observations affect forecast skill. Future research efforts should prioritize long-term studies to refine process understanding and increased sampling frequency and replication to better define initial conditions. Our results emphasize the importance of ecological forecasting principles and uncertainty partitioning to refine and understand predictive capacity across ecosystems.