William Hutchison

and 10 more

East Africa hosts significant reserves of untapped geothermal energy. Most exploration has focused on geologically young (<1 Ma) silicic caldera volcanoes, yet there are many sites of geothermal potential where there is no clear link to an active volcano. The origin and architecture of these systems is poorly understood. Here, we combine remote sensing and field observations to investigate a fault-controlled geothermal play located north of lake Abaya in the Main Ethiopian Rift. Soil gas CO2 and temperature surveys were used to examine permeable pathways and showed elevated values along a ~110 m high fault which marks the western edge of the Abaya graben. Ground temperatures are particularly elevated where multiple intersecting faults form a wedged horst structure. This illustrates that both deep penetrating graben bounding faults and near-surface fault intersections control the ascent of hydrothermal fluids and gases. Total CO2 emissions along the graben fault are ~300 t d–1; a value comparable to the total CO2 emission from silicic caldera volcanoes. Fumarole gases show δ13C of –6.4 to –3.8 ‰ and air-corrected 3He/4He values of 3.84–4.11 RA, indicating a magmatic source originating from an admixture of upper mantle and crustal helium. Although our model of the North Abaya geothermal system requires a deep intrusive heat source, we find no ground deformation evidence for volcanic unrest nor recent volcanism. This represents a key advantage over the active silicic calderas that typically host these resources and suggests that fault-controlled geothermal systems offer viable prospects for further exploration and development.

Patricia MacQueen

and 12 more

Uturuncu volcano in southern Bolivia is a member of a distinctive class of volcanoes – systems that show unrest despite not having erupted in the Holocene. Uturuncu has not erupted in 250 kyr, but has been deforming (uplift with a moat of subsidence) for several decades, along with seismic swarms and active, sulfur-encrusted fumaroles. Our work builds on previous geophysical imaging at Uturuncu by jointly analyzing multidisciplinary datasets, focusing on imaging the shallow (<15 km depth below surface) structure of the system with geophysical and geochemical data. Whereas previous research pointed to andesite melt at depths >15 km depth, results were ambiguous as to what proportions of melts vs. brines are present at shallower depths. Identifying fluids (melt, brine, etc.) and structures at shallow depths is key for evaluating the hazard potential of the volcano and understanding the source of the unrest. We present new results from gravimetry, seismology (hypocenter relocation, seismic velocity and attenuation tomography), gas geochemistry, and InSAR observations. The results point to an extensive and active hydrothermal system extending ~20 km laterally and ~10 km vertically from Uturuncu, with possible connections at depth to the deeper magmatic system. A combined view of the new density, seismic velocity and attenuation models, and the existing resistivity model is crucial for revealing key features of the hydrothermal system: a vapour-rich conduit beneath Uturuncu (low resistivity/high attenuation column extending from 1.5 to 12.5 km depth), an extensive alteration zone surrounding Uturuncu (complex zone of annular shaped anomalies surrounding Uturuncu from 1.5 to 12.5 km depth), and a possible zone of sulfide deposition just below the western flank of Uturuncu at 1.5 km depth (high density/low resistivity/high attenuation). High fluxes of diffuse CO2 degassing at sub-magmatic temperatures and a small area directly above a low resistivity anomaly subsiding from 2014 to 2017 show that the hydrothermal system is currently active. Analyzed jointly, this multidisciplinary data set suggests that current activity within the shallow structure at Uturuncu is dominated by hydrothermal, rather than magmatic processes.