Jennifer C. Stern

and 35 more

Field studies at terrestrial analogue sites represent an important contribution to the science of ocean worlds. The value of the science and technology investigations conducted at field analogue sites depends on the relevance of the analogue environment to the target ocean world. We accept that there are no perfect analogues for many of the unique environments represented by ocean worlds but suggest that a one-to-one matching of environmental characteristics and conditions is not crucial to the success or impact of the work. Instead, we must instead determine which processes and parameters are required to map directly to the target ocean world environment with high fidelity to address the science question or engineering challenge. Where there are discrepancies between the model and target environment, we must fully understand how those limitations impact the applicability of the study, and mitigate these where possible using alternative approaches. Here we present a two-step approach to 1) identify the most crucial processes and parameters associated with a given science question and 2) assess the fidelity of these processes and parameters at a proposed field site to those expected for the target ocean world. We demonstrate this approach in a test case evaluating three types of ocean world analogue environments with respect to a science question. Our proposed framework will not only enhance the scientific rigor of field research but also provide access to a broader range of field sites relevant to ocean worlds processes, enabling a greater diversity of ocean and geological science researchers.

Frances Bryson

and 9 more

While liquid environments with high salt content are of broad interest to the Earth and Planetary Science communities, instruments face challenges in detecting organics in hypersaline samples due to the effects of salts. Therefore, technology to desalt samples before analysis by these instruments would be enabling for liquid sampling on missions to Mars or ocean worlds. Electrodialysis (ED) removes salt from aqueous solutions by applying an electric potential across a series of ion-selective membranes, and is demonstrated to retain a significant percentage of dissolved organic molecules (DOM) in marine samples. However, current electrodialysis systems used for DOM recovery are too large for deployment on missions or for use in terrestrial fieldwork. Here we present the design and evaluation of the Minature Robotic Electrodialysis (MR ED) system, which is approximately 1/20th the size of heritage instruments and processes as little as 50 mL of sample at a time. We present tests of the instrument efficiency and DOM recovery using lab-created solutions as well as natural samples taken from an estuary of the Skidaway River (Savannah, GA) and from South Bay Saltworks (San Diego, CA). Our results show that the MR ED system removed 97-99% of the salts in most samples, with an average DOC recovery range from 53 to 77%, achieving similar capability to tabletop instruments. This work both demonstrates MR ED as a possible field instrument and increases the technology readiness level of miniaturized electrodialysis systems for future missions.