We use Interferometric Synthetic Aperture Radar (InSAR) data collected by the Sentinel-1 mission to study the co- and postseismic deformation due to the 2017 Mw 7.3 Sarpol-e Zahab earthquake occurred near the Iran-Iraq border in Northwest Zagros. We find that most of the coseismic moment release is between 15 and 21 km depth, well beneath the boundary between the sedimentary cover and underlying basement. Data from all four satellite tracks also reveal robust postseismic deformation during ~ 12 months after the mainshock (from November 2017 to December 2018). Kinematic inversions show that the observed postseismic InSAR LOS displacements are well explained by oblique (thrust + dextral) afterslip both updip and downdip of the coseismic peak slip area. The dip angle of the shallow afterslip fault plane is found to be significantly smaller than that of the coseismic rupture, corresponding to a shallowly dipping detachment located near the base of the sediments. Aftershocks during the same time period exhibit a similar temporal evolution as the InSAR time series, with most of the aftershocks being located within and around the area of maximum surface deformation. The postseismic deformation data are consistent with stress-driven afterslip models, assuming that the afterslip evolution is governed by rate-strengthening friction. The preferred value of a\sigma for the updip afterslip zone is ~30-40 times higher than that of the downdip afterslip zone. The contrasting frictional properties updip and downdip of the coseismic rupture likely reflect differences in fault zone materials at different depths along the Zagros.