Essential Site Maintenance: Authorea-powered sites will be updated circa 15:00-17:00 Eastern on Tuesday 5 November.
There should be no interruption to normal services, but please contact us at [email protected] in case you face any issues.

Davide Tognin

and 4 more

A proper understanding of sediment transport dynamics, critically including resuspension and deposition processes of suspended sediments, is key to the morphodynamics of shallow tidal environments. Aiming to account for deposition mechanics in a synthetic theoretical framework introduced to model erosion dynamics, here we investigated suspended sediment dynamics. A complete spatial and temporal coverage of suspended sediment concentration (SSC) required to effectively characterize resuspension events is hardly available through observation alone, even combining point measurements and satellite images, but it can be retrieved by properly calibrated and tested numerical models. We analyzed one-year-long time series of SSC computed by a bi-dimensional, finite-element model in six historical configurations of the Venice Lagoon in the last four centuries. Following the peak-over-threshold theory, we statistically characterized suspended sediment dynamics by analyzing interarrival times, intensities and durations of over-threshold SSC events. Our results confirm that, as for erosion events, SSC can be modeled as a marked Poisson process in the intertidal flats for all the considered historical configurations of the Venice Lagoon because exponentially distributed random variables well describe interarrival times, intensity and duration of over-threshold events. Moreover, interarrival times, intensity and duration describing local erosion and over-threshold SSC events are highly related, although not identical because of the non-local dynamics of suspended sediment transport related to advection and dispersion processes. Owing to this statistical characterization of SSC events, it is possible to generate synthetic, yet realistic, time series of SSC for the long-term modeling of shallow tidal environments.

Andrea D'Alpaos

and 5 more

Wave-induced bottom shear stress is one of the leading processes that control sediment erosion dynamics in shallow tidal environments, because it is responsible for sediment resuspension and, jointly with tidal currents, for sediment reworking on tidal flats. Reliable descriptions of erosion events are foundational to effective frameworks relevant to the fate of tidal landscape evolution. However, the absence of long-term, measured time series of bottom shear stress (BSS) prevents a direct analysis of erosion dynamics. Here we adopted a fully-coupled, bi-dimensional numerical model to compute BSS generated by both tidal currents and wind waves in six historical configurations of the Venice Lagoon in the last four centuries. The one-year-long time series of the total BSS were analyzed based on the peak-over-threshold theory to statistically characterize events that exceed a given erosion threshold and investigate the effects of morphological modifications on spatial and temporal erosion patterns. Our analysis suggests that erosion events can be modeled as a marked Poisson process in the intertidal flats for all the considered configurations of the Venice Lagoon, because interarrival times, durations and intensities of the over-threshold exceedances are well described by exponentially distributed random variables. Moreover, while the intensity and duration of over-threshold events are temporally correlated, almost no correlation exists between them and interarrival times. The resulting statistical characterization allows for a straightforward computation of morphological indicators, such as erosion work, and paves the way to a novel synthetic, yet reliable, approach for long-term morphodynamic modeling of tidal environments.