An effective method for obtaining large amounts of metal nanoparticles encapsulated by carbon layers through upcycling from floating-catalyst aerosol chemical vapor deposited carbon nanotubes is demonstrated. Nanoparticles with diameters of less than 20 µm are selectively extracted from the synthesized carbon assortments through sonication, centrifugation, and filtration. The particles show an aggregation behavior owing to the π–π interaction between the graphitic carbon shells surrounding the iron carbides. By controlling the degree of the aggregation and arrangement, the light scattering by the gap-surface plasmon effect in perovskite solar cells is maximized. Application of the nanoparticles to the devices increased the power conversion efficiency from 19.71% to 21.15%. The short-circuit current density (JSC) trend over the particle aggregation time accounts for the plasmonic effect. The devices show high stability analogue to the control devices, confirming that no metal-ion migration took place thanks to the encapsulation.