MarsWRF, the general circulation model of Mars, is one of the most commonly used models to study the dust cycle in the Martian atmosphere. It has been widely used to study the mechanisms of dust storms and their effects on the Martian atmosphere. To better understand the ability of MarsWRF to simulate the dust cycle on Mars, this study assesses the current dust lifting schemes in the model, specifically the convective lifting and wind stress schemes. It is found that, by tuning lifting efficiency, the model with the convective lifting scheme can generally reproduce the seasonal variation of the mid-level atmospheric temperature (T15) but cannot reproduce the observed spatial distribution of dust devils, which exhibits non-homogeneous (uniform) distribution in the northern (southern) hemisphere. The model with the wind stress lifting scheme can generally capture the observed magnitude of T15 and column dust optical depth (CDOD) with properly tuned lifting efficiency and threshold drag velocity. There is a discrepancy in the assessment of modeling seasonal variations of dust with T15 and CDOD, which may be partly due to the observational uncertainties related to T15 and CDOD and the empirical modeling methods of Martian dust optical properties and radiative effect. For the spatial distribution of dust, there are significant simulation biases regardless of the tuning, which may be caused by the biases in the dust lifting process and large-scale atmospheric circulation. The analysis highlights that dust lifting schemes need further improvement to better represent the dust cycle and their impacts on Mars.