We study the ground state solutions for the following p\&q-Laplacain equation \[ \left\{ \begin{array}{ll} -\Delta_pu-\Delta_qu+V(x) (|u|^{p-2}u+|u|^{q-2}u)=\lambda K(x)f(u)+|u|^{q^*-2}u,~x\in\R^N, \\ u\in W^{1,p}(\R^N)\cap W^{1,q}(\R^N), \end{array} \right. \] where $\lambda>0$ is a parameter large enough, $\Delta_ru = \text{div}(|\nabla u|^{r-2}\nabla u)$ with $r\in\{p,q\}$ denotes the $r$ Laplacian operator, $1