Many attempts have been made in the past to regain the spectral accuracy of the spectral methods, which is lost drastically due to the presence of discontinuity. In this article, an attempt has been made to show that mollification using Legendre and Chebyshev polynomial based kernels improves the convergence rate of the Fourier spectral method. Numerical illustrations are provided with examples involving one or more discontinuities and compared with the existing Dirichlet kernel mollifier. Dependence of the efficiency of the polynomial mollifiers on the parameter P is analogous to that in the Dirichlet mollifier, which is detailed by analysing the numerical solution. Further, they are extended to linear scalar conservation law problems.