You need to sign in or sign up before continuing. dismiss

Andreas Colliander

and 47 more

NASA’s Soil Moisture Active Passive (SMAP) mission has been validating its soil moisture (SM) products since the start of data production on March 31, 2015. Prior to launch, the mission defined a set of criteria for core validation sites (CVS) that enable the testing of the key mission SM accuracy requirement (unbiased root-mean-square error <0.04 m3/m3). The validation approach also includes other (“sparse network”) in situ SM measurements, satellite SM products, model-based SM products, and field experiments. Over the past six years, the SMAP SM products have been analyzed with respect to these reference data, and the analysis approaches themselves have been scrutinized in an effort to best understand the products’ performance. Validation of the most recent SMAP Level 2 and 3 SM retrieval products (R17000) shows that the L-band (1.4 GHz) radiometer-based SM record continues to meet mission requirements. The products are generally consistent with SM retrievals from the ESA Soil Moisture Ocean Salinity mission, although there are differences in some regions. The high-resolution (3-km) SM retrieval product, generated by combining Copernicus Sentinel-1 data with SMAP observations, performs within expectations. Currently, however, there is limited availability of 3-km CVS data to support extensive validation at this spatial scale. The most recent (version 5) SMAP Level 4 SM data assimilation product providing surface and root-zone SM with complete spatio-temporal coverage at 9-km resolution also meets performance requirements. The SMAP SM validation program will continue throughout the mission life; future plans include expanding it to forested and high-latitude regions.

Edward Ayres

and 5 more

Soil moisture influences forest health, fire occurrence and extent, and insect and pathogen impacts, creating a need for regular, globally extensive soil moisture measurements that can only be achieved by satellite-based sensors, such as NASA’s Soil Moisture Active Passive (SMAP). However, SMAP data for forested regions, which account for ~20% of land cover globally, are flagged as unreliable due to interference from vegetation water content, and forests were underrepresented in previous validation efforts, preventing an assessment of measurement accuracy in these biomes. Here we compare over twelve thousand SMAP soil moisture measurements, representing 88 site-years, to in-situ soil moisture measurements from forty National Ecological Observatory Network (NEON) sites throughout the US, half of which are forested. At unforested NEON sites, agreement with SMAP soil moisture (unbiased RMSD: 0.046 m3 m-3) was similar to previous sparse network validations (which include inflation of the metric due to spatial representativeness errors). For the forested sites, SMAP achieved a reasonable level of accuracy (unbiased RMSD: 0.06 m3 m-3 or 0.053 m3 m-3 after accounting for random representativeness errors) indicating SMAP is sensitive to changes in soil moisture in forest ecosystems. Moreover, we identified that both an index of vegetation water content and canopy height were related to mean difference, which incorporates measurement bias and representativeness bias, and suggests a potential approach to improve SMAP algorithm parameterization for forested regions. In addition, expanding the number and extent of soil moisture measurements at forested validation sites would likely further reduce mean difference by minimizing representativeness errors.