Stephen M Griffies

and 27 more

We present the GFDL-CM4X (Geophysical Fluid Dynamics Laboratory Climate Model version 4X) coupled climate model hierarchy. The primary application for CM4X is to investigate ocean and sea ice physics as part of a realistic coupled Earth climate model. CM4X utilizes an updated MOM6 (Modular Ocean Model version 6) ocean physics package relative to CM4.0, and there are two members of the hierarchy: one that uses a horizontal grid spacing of $0.25^{\circ}$ (referred to as CM4X-p25) and the other that uses a $0.125^{\circ}$ grid (CM4X-p125). CM4X also refines its atmospheric grid from the nominally 100~km (cubed sphere C96) of CM4.0 to 50~km (C192). Finally, CM4X simplifies the land model to allow for a more focused study of the role of ocean changes to global mean climate.   CM4X-p125 reaches a global ocean area mean heat flux imbalance of $-0.02~\mbox{W}~\mbox{m}^{-2}$ within $\mathcal{O}(150)$ years in a pre-industrial simulation, and retains that thermally equilibrated state over the subsequent centuries. This 1850 thermal equilibrium is characterized by roughly $400~\mbox{ZJ}$ less ocean heat than present-day, which corresponds to estimates for anthropogenic ocean heat uptake between 1850 and present-day. CM4X-p25 approaches its thermal equilibrium only after more than 1000 years, at which time its ocean has roughly $1100~\mbox{ZJ}$ {\it more} heat than its early 21st century ocean initial state. Furthermore, the root-mean-square sea surface temperature bias for historical simulations is roughly 20\% smaller in CM4X-p125 relative to CM4X-p25 (and CM4.0). We offer the {\it mesoscale dominance hypothesis} for why CM4X-p125 shows such favorable thermal equilibration properties.

Hemant Khatri

and 7 more

The climatological mean barotropic vorticity budget is analyzed to investigate the relative importance of surface wind stress, topography and nonlinear advection in dynamical balances in a global ocean simulation. In addition to a pronounced regional variability in vorticity balances, the relative magnitudes of vorticity budget terms strongly depend on the length-scale of interest. To carry out a length-scale dependent vorticity analysis in different ocean basins, vorticity budget terms are spatially filtered by employing the coarse-graining technique. At length-scales greater than 10o (or roughly 1000 km), the dynamics closely follow the Topographic-Sverdrup balance in which bottom pressure torque, surface wind stress curl and planetary vorticity advection terms are in balance. In contrast, when including all length-scales resolved by the model, bottom pressure torque and nonlinear advection terms dominate the vorticity budget (Topographic-Nonlinear balance), which suggests a prominent role of oceanic eddies, which are of Ο(10-100) km in size, and the associated bottom pressure anomalies in local vorticity balances at length-scales smaller than 1000 km. Overall, there is a transition from the Topographic-Nonlinear regime at scales smaller than 10o to the Topographic-Sverdrup regime at length-scales greater than 10o. These dynamical balances hold across all ocean basins; however, interpretations of the dominant vorticity balances depend on the level of spatial filtering or the effective model resolution. On the other hand, the contribution of bottom and lateral friction terms in the barotropic vorticity budget remains small and is significant only near sea-land boundaries, where bottom stress and horizontal friction generally peak.