Yiling Huo

and 23 more

This paper provides an overview of the United States (U.S.) Department of Energy’s (DOE’s) Energy Exascale Earth System Model version 2.1 with an Arctic regionally refined mesh (RRM), hereafter referred to as E3SMv2.1-Arctic, for the atmosphere (25 km), land (25 km), and ocean/ice (10 km) components. We evaluate the atmospheric component and its interactions with land, ocean, and cryosphere by comparing the RRM (E3SM2.1-Arctic) historical simulations (1950-2014) with the uniform low-resolution (LR) counterpart, reanalysis products, and observational datasets. The RRM generally reduces biases in the LR model, improving simulations of Arctic large-scale mean fields, such as precipitation, atmospheric circulation, clouds, atmospheric river frequency, and sea ice dynamics. However, the RRM introduces a seasonally dependent surface air temperature bias, reducing the LR cold bias in summer but enhancing the LR warm bias in winter. The RRM also underestimates winter sea ice area and volume, consistent with its strong winter warm bias. Radiative feedback analysis shows similar climate feedback strengths in both RRM and LR, with the RRM exhibiting a more positive surface albedo feedback and contributing to a stronger surface warming than LR. These findings underscore the importance of high-resolution modeling for advancing our understanding of Arctic climate changes and their broader global impacts, although some persistent biases appear to be independent of model resolution at 10-100 km scales.

Oluwayemi A. Garuba

and 5 more

This work describes the implementation and evaluation of the Slab Ocean Model com16 ponent of the Energy Exascale Earth System Model version 2 (E3SMv2-SOM) and its application to understanding the climate sensitivity to ocean heat transports (OHTs) and CO2 forcing. E3SMv2-SOM reproduces the baseline climate and Equilibrium Climate Sensitivity (ECS) of the fully coupled E3SMv2 experiments reasonably well, with a pattern correlation close to 1 and a global mean bias of less than 1% of the fully coupled surface temperature and precipitation. Sea ice extent and volume are also well reproduced in the SOM. Consistent with general model behavior, the ECS estimated from the SOM (4.5K) exceeds the effective climate sensitivity obtained from extrapolation to equilibrium in the fully coupled model (4.0K). The E3SMv2 baseline climate also shows a large sensitivity to OHT strengths, with a global surface temperature difference of about 4.0◦ C between high-/low-OHT experiments with prescribed forcings derived from fully coupled experiments with realistic/weak ocean circulation strengths. Similar to their forc ng pattern, the surface temperature response occurs mainly over the subpolar regions in both hemispheres. However, the Southern Ocean shows more surface temperature sensitivity to high/low-OHT forcing due to a positive/negative shortwave cloud radiative effect caused by decreases/increases in mid-latitude marine low-level clouds. This large temperature sensitivity also causes an overcompensation between the prescribed OHTs and atmosphere heat transports. The SOM’s ECS estimate is also sensitive to the prescribed OHT and the associated baseline climate it is initialized from; the high-OHT ECS is 0.5K lower than the low-OHT ECS.