L-Hexoses are key components of many biologically relevant natural products and pharmaceuticals. As rare sugars, L-hexoses are not readily obtained from natural sources. Access to L-hexose building blocks from commercially available and inexpensive D-sugars is highly desirable from the viewpoints of organic synthesis and drug discovery. As demonstrated by the convenient preparation of L-glucosyl, L-galactosyl, and L-mannosyl fluorides from readily available β-D-C-glucosyl, β-D-C-mannosyl, and β-D-C-galactosyl derivatives, we describe a novel and efficient approach to the demanding L-glycosyl fluorides. The transformation features the installation of anomeric hydroxymethyl group under mild conditions and head-to-tail inversion of sugar rings through radical decarboxylative fluorination of uronic acids. The power of this protocol is highlighted by the first assembly of a pentasaccharide repeating unit of Pseudomonas ATCC 31554 extracellular polysaccharide (S-88). This synthesis relies on the efficient extension of sugar chain at the sterically hindered hydroxy group and the facile introduction of L-mannosyl unit using L-mannosyl fluoride as glycosylating agent. The methods developed in this work would provide new tools to the arsenal of synthesis of L-sugar building blocks and of assembly of glycans containing L-sugar moieties.