Global Well-Posedness for the 3D Rotating Boussinesq Equations in
Variable Exponent Fourier-Besov Spaces
Abstract
We study the small initial data Cauchy problem for the three-dimensional
Boussinesq equations with the Coriolis force in variable exponent
Fourier-Besov spaces. By using the Fourier localization argument and
Littlewood-Paley decomposition, we obtain the global well-posedness
result for small initial data (u 0,θ 0)
belonging to the critical variable exponent Fourier-Besov spaces
$\mathcal{F}\mathcal{\dot{B}}_{p(\cdot),q}^{2-\frac{3}{p(\cdot)}}$.