We propose two simple and effective spiking neuron models to improve the response time of the conventional spiking neural network. The proposed neuron models adaptively tune the presynaptic input current depending on the input received from its presynapses and subsequent neuron firing events. We analyze and derive the firing activity homeostatic convergence of the proposed models. We experimentally verify and compare the models on MNIST handwritten digits and FashionMNIST classification tasks. We show that the proposed neuron models significantly increase the response speed to the input signal.