We propose an image warping-based remote rendering technique for volumes that decouples the rendering and display phases. Our work builds on prior work that samples the volume on the client using ray casting and reconstructs a z-value based on some heuristic. The color and depth buffer are then sent to the client that reuses this depth image as a stand-in for subsequent frames by warping it according to the current camera position until new data was received from the server. We augment that method by implementing the client renderer using ray tracing. By representing the pixel contributions as spheres, this allows us to effectively vary their footprint based on the distance to the viewer, which we find to give better results than point-based rasterization when applied to volumetric data sets.