Malware growth has accelerated due to the widespread use of Android applications. Android smartphone attacks have increased due to the widespread use of these devices. While deep learning models offer high efficiency and accuracy, training them on large and complex data sets is computationally expensive. Hence, a method that effectively detects new malware variants at a low computational cost is required. A transfer learning method to detect Android malware is proposed in this research. Because of transferring known features from a source model that has been trained to a target model, the transfer learning approach reduces the need for new training data and minimizes the need for huge amounts of computational power. We performed many experiments on 1.2 million Android application samples for performance evaluation. In addition, we evaluated how well our framework performed in comparison to traditional deep learning and standard machine learning models. In comparison to state-of-the-art Android malware detection methods, the proposed framework offers improved classification accuracy of 98.87%, a precision of 99.55%, recall of 97.30%, f1 measure of 99.42%, and a quicker detection rate of 5.14 ms by utilizing the transfer learning strategy.