Yalan Song

and 18 more

The National Water Model (NWM) is a key tool for flood forecasting and planning and water management. Key challenges facing NWM include calibration and parameter regionalization when confronted with big data. We present two novel versions of high-resolution (~37 km2) differentiable models (a type of physics-informed machine learning): one with implicit, unit-hydrograph-style routing and another with explicit Muskingum-Cunge routing in the river network. The former predicts streamflow at basin outlets whereas the latter presents a discretized product that seamlessly covers rivers in the conterminous United States (CONUS). Both versions used neural networks to provide multiscale parameterization and process-based equations to provide structural backbone, trained them together (“end-to-end”) on 2,807 basins across CONUS, and evaluated them on 4,997 basins. Both versions show the great potential to elevate future NWMs for extensively calibrated as well as ungauged sites: the median daily Nash-Sutcliffe efficiency (NSE) of all 4,997 basins is improved to around 0.68 from 0.49 of NWM3.0. As they resolve heterogeneity, both greatly improved simulations in the western CONUS and also in the Prairie Pothole Region, a long-standing modeling challenge. The Muskingum-Cunge version further improved performance for basins >10000 km2. Overall, our results show how neural-network-based parameterizations can improve NWM performance for providing operational flood predictions while maintaining interpretability and multivariate outputs. We provide a CONUS-scale hydrologic dataset for further evaluation and use. The modeling system supports the Basic Model Interface (BMI), which allows seamless integration with the next-generation NWM.

Yuan Yang

and 9 more

Accurate global river discharge estimation is crucial for advancing our scientific understanding of the global water cycle and supporting various downstream applications. In recent years, data-driven machine learning models, particularly the Long Short-Term Memory (LSTM) model, have shown significant promise in estimating discharge. Despite this, the applicability of LSTM models for global river discharge estimation remains largely unexplored. In this study, we diverge from the conventional basin-lumped LSTM modeling in limited basins. For the first time, we apply an LSTM on a global 0.25° grid, coupling it with a river routing model to estimate river discharge for every river reach worldwide. We rigorously evaluate the performance over 5332 evaluation gauges globally for the period 2000-2020, separate from the training basins and period. The grid-scale LSTM model effectively captures the rainfall-runoff behavior, reproducing global river discharge with high accuracy and achieving a median Kling-Gupta Efficiency (KGE) of 0.563. It outperforms an extensively bias-corrected and calibrated benchmark simulation based on the Variable Infiltration Capacity (VIC) model, which achieved a median KGE of 0.466. Using the global grid-scale LSTM model, we develop an improved global reach-level daily discharge dataset spanning 1980 to 2020, named GRADES-hydroDL. This dataset is anticipated to be useful for a myriad of applications, including providing prior information for the Surface Water and Ocean Topography (SWOT) satellite mission. The dataset is openly available via Globus.