Maryam Golmohammadi

and 9 more

Dry eye disease (DED) represents a prevalent visual ailment, defined by insufficient wetting and lubrication of the ocular surface. The principal management strategy for dry eye involves the application of artificial tear solutions to mitigate eye discomfort. Moreover, immune-modulating agents such as cyclosporine A and tacrolimus (FK506) are employed in the therapeutic regimen for this condition. These drugs regulate the immune response and reduce ocular inflammation. Tacrolimus (TAC) is 10-100 times more effective than cyclosporine and has a better safety profile. Nevertheless, the modest aqueous solubility and substantial molecular size of TAC present obstacles to its efficient administration to the eye. Consequently, a range of TAC formulations including ointments, micelles, liposomes, and nanocarriers are under exploration to enhance ocular delivery. Findings from this investigation indicated that TAC impedes the secretion of pro-inflammatory cytokines and dampens immune activity by restraining the activation of T and B lymphocytes. Furthermore, TAC elevates goblet cell populations in the conjunctiva, pivotal for mucin production and the preservation of ocular surface integrity. Additionally, using TAC-loaded liposomes can further enhance its therapeutic efficacy by improving ocular bioavailability. Furthermore, 0.03% TAC eye drops applied directly to the eye successfully improve tear film stability and the health of the eye’s surface in patients with DED. Overall, TAC has shown promising effects in treating DED by reducing inflammation and improving tear secretion in experimental and clinical studies. However, more studies are needed to fully understand the mechanism of action and long-term effects of TAC on DED.
Metformin (MET) is a preferred drug for the treatment of type 2 diabetes mellitus. Recent studies show that apart from its blood glucose-lowering effects, it also inhibits the development of various tumours, by inducing autophagy. Various studies have confirmed the inhibitory effects of MET on cancer cell lines’ propagation, migration, and invasion. The objective of the study was to comprehensively review the potential of MET as an anticancer agent, particularly focusing on its ability to induce autophagy and inhibit the development and progression of various tumors. The study aimed to explore the inhibitory effects of MET on cancer cell proliferation, migration, and invasion, and its impact on key signaling pathways such as AMPK, mTOR, and PI3K. This review noted that MET exerts its anticancer effects by regulating key signalling pathways such as phosphoinositide 3-kinase (PI3K), LC3-I and LC3-II, Beclin-1, p53, and the autophagy-related gene (ATG), inhibiting the mTOR protein, downregulating the expression of p62/SQSTM1, and blockage of the cell cycle at the G0/G1. Moreover, MET can stimulate autophagy through pathways associated with the 5′ adenosine monophosphate-activated protein kinase (AMPK), thereby inhibiting he development and progression of various human cancers, including hepatocellular carcinoma, prostate cancer, pancreatic cancer, osteosarcoma, myeloma, and non-small cell lung cancer. In summary, this detailed review provides a framework for further investigations that may appraise the autophagy-induced anticancer potential of MET and its repurposing for cancer treatment.

Maryam Golmohammadi

and 9 more

Dry eye disease (DED) represents a prevalent visual ailment, defined by insufficient wetting and lubrication of the ocular surface. The principal management strategy for dry eye involves the application of artificial tear solutions to mitigate eye discomfort. Moreover, immune-modulating agents such as cyclosporine A and tacrolimus (FK506) are employed in the therapeutic regimen for this condition. These drugs regulate the immune response and reduce ocular inflammation. Tacrolimus (TAC) is 10-100 times more effective than cyclosporine and has a better safety profile. Nevertheless, the modest aqueous solubility and substantial molecular size of TAC present obstacles to its efficient administration to the eye. Consequently, a range of TAC formulations including ointments, micelles, liposomes, and nanocarriers are under exploration to enhance ocular delivery. Findings from this investigation indicated that TAC impedes the secretion of pro-inflammatory cytokines and dampens immune activity by restraining the activation of T and B lymphocytes. Furthermore, TAC elevates goblet cell populations in the conjunctiva, pivotal for mucin production and the preservation of ocular surface integrity. Additionally, using TAC-loaded liposomes can further enhance its therapeutic efficacy by improving ocular bioavailability. Furthermore, 0.03% TAC eye drops applied directly to the eye successfully improve tear film stability and the health of the eye’s surface in patients with DED. Overall, TAC has shown promising effects in treating DED by reducing inflammation and improving tear secretion in experimental and clinical studies. However, more studies are needed to fully understand the mechanism of action and long-term effects of TAC on DED.
Colorectal cancer (CRC) is a common and highly metastatic cancer affecting people worldwide. Drug resistance and unwanted side effects are some of the limitations of current treatments for CRC. Naringenin (NAR) is a naturally occurring compound found in abundance in various citrus fruits such as oranges, grapefruits, and tomatoes. It possesses a diverse range of pharmacological and biological properties that are beneficial for human health. Numerous studies have highlighted its antioxidant, anti-cancer, and anti-inflammatory activities, making it a subject of interest in scientific research. This review provides a comprehensive overview of the effects of NAR on CRC. The study’s findings indicated that NAR: 1) interacts with estrogen receptors, 2) regulates the expression of genes related to the p53 signaling pathway, 3) promotes apoptosis by increasing the expression of proapoptotic genes (Bax, caspase9, and p53) and downregulation of the antiapoptotic gene Bcl2, 4) inhibits the activity of enzymes involved in cell survival and proliferation, 5) decreases cyclin D1 levels, 6) reduces the expression of cyclin-dependent kinases (Cdk4, Cdk6, Cdk7) and anti-apoptotic genes (Bcl2, x-IAP, c-IAP-2) in CRC cells. In vitro CDK2 binding assay was also performed, showing that the NAR derivatives had better inhibitory activities on CDK2 than NAR. Based on the findings of this study, NAR is a potential therapeutic agent for CRC. Additional pharmacology and pharmacokinetics studies are required to fully elucidate the mechanisms of action of NAR and establish the most suitable dose for subsequent clinical investigations.
Diabetes mellitus (DM), a chronic metabolic disorder associated with hyperglycemia and other complications, is one of the five priority non communicable diseases of global interest with unprecedented rise in developing countries. Whereas, the current treatment with insulin and oral hypoglycemic agents is aimed at managing the hyperglycemia and associated complications, there is need to explore other critical pathways in the pathogenesis of DM that can act as potential drug targets with better treatment outcomes. This study comprehensively explains the role of cellular and molecular elements, like hyperglycemia-induced oxidative stress, endothelial dysfunction, and Nuclear Factor Kappa B (NF-κB)’s involvement in inflammation and immune regulation, in the onset of DM. With bioactive compounds from natural products gaining popularity as novel drug molecules due to their diverse pharmacological actions, the study also extensively explores the prospective therapeutic benefits of curcumin (CUR), a bioactive compound known for its antioxidant, anti-inflammatory, and hypoglycemic properties, in addressing diabetic complications, predominantly via the modulation of the NF-κB pathway. The findings reveal that CUR administration effectively lowered blood glucose elevation, reinstated diminished serum insulin levels, and enhanced body weight in Streptozotocin -induced diabetic rats. CUR exerts its beneficial effects in management of diabetic complications through regulation of signaling pathways, such as CaMKII, PPAR-γ, NF-κB, and TGF-β1. Moreover, CUR reversed the heightened expression of inflammatory cytokines (TNF-α, IL-1β, IL-6) and chemokines like MCP-1 in diabetic specimens, vindicating its anti-inflammatory potency in counteracting hyperglycemia-induced alterations. CUR diminishes oxidative stress, avert structural kidney damage linked to diabetic nephropathy, and suppress NF-κB activity. Furthermore, CUR exhibited a protective effect against diabetic cardiomyopathy, lung injury, and diabetic gastroparesis. Conclusively, the study posits that CUR could potentially offer therapeutic benefits in relieving diabetic complications through its influence on the NF-κB pathway.

Maryam Golmohammadi

and 8 more

Mohammad Zamanian

and 9 more

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, leading to various motor and non-motor symptoms. Several cellular and molecular mechanisms such as alpha-synuclein (α-syn) accumulation, mitochondrial dysfunction, oxidative stress, and neuroinflammation are involved in the pathogenesis of this disease. MicroRNAs (miRNAs) play important roles in post-transcriptional gene regulation. They are typically about 21-25 nucleotides in length and are involved in the regulation of gene expression by binding to the messenger RNA (mRNA) molecules. miRNAs like miR-221 play important roles in various biological processes, including development, cell proliferation, differentiation, and apoptosis. miR-221 is also implicated in promoting neuronal survival against oxidative stress and in promoting neurite outgrowth and neuronal differentiation. Additionally, the role of miR-221 in PD has been investigated in several studies. According to the results of this study; 1) miR-221 protects against oxidative stress in 6-hydroxydopamine-induced PC12 cells; 2) miR-221 prevents Bax/caspase-3 signaling activation by stopping Bim; 3) miR-221 has moderate predictive power for PD; 4) miR-221 directly targets PTEN, and PTEN over-expression eliminates the protective action of miR-221 on p-AKT expression in PC12 cells; 5) miRNA-221, by manipulating the Akt signaling pathway, performs in controlling cell viability and apoptosis in PD. This review study suggests that miR-221 has the potential to be used as a clinical biomarker for PD diagnosis and stage assignment.