loading page

Delay margin analysis of uncertain linear control systems using probabilistic µ
  • +4
  • F. Somers,
  • Clement Roos,
  • Jean-Marc Biannic,
  • F. Sanfedino,
  • Valentin Preda,
  • S. Bennani,
  • H. Evain
F. Somers
ONERA Toulouse

Corresponding Author:[email protected]

Author Profile
Clement Roos
ONERA Toulouse
Author Profile
Jean-Marc Biannic
ONERA Toulouse
Author Profile
F. Sanfedino
ISAE-SUPAERO
Author Profile
Valentin Preda
European Space Research and Technology Centre
Author Profile
S. Bennani
European Space Research and Technology Centre
Author Profile
H. Evain
Centre spatial de Toulouse
Author Profile

Abstract

Monte Carlo simulations have long been a widely used method in the industry for control system validation. They provide an accurate probability measure for sufficiently frequent phenomena, but are often time-consuming and may fail to detect very rare events. Conversely, deterministic techniques such as µ or IQC-based analysis allow fast calculation of worst-case stability margins and performance levels, but in the absence of a probabilistic framework, a control system may be invalidated on the basis of extremely rare events. Probabilistic µ-analysis has therefore been studied since the 1990s to bridge this analysis gap by focusing on rare but nonetheless possible situations that may threaten system integrity. The solution adopted in this paper implements a branch-and-bound algorithm to explore the whole uncertainty domain by dividing it into smaller and smaller subsets. At each step, sufficient conditions involving µ upper bound computations are used to check whether a given requirement – related to the delay margin in the present case – is satisfied or violated on the whole considered subset. Guaranteed bounds on the exact probability of delay margin satisfaction or violation are then obtained, based on the probability distributions of the uncertain parameters. The difficulty here arises from the exponential term classically used to represent a delay, which must be replaced by a rational expression to fit into the Linear Fractional Representation (LFR) framework imposed by µ-analysis. Two different approaches are proposed and compared in this paper. First, an equivalent representation using a rational function of degree 2 with the same gain and phase as the real delay, which results into an LFR with frequency-dependent uncertainty bounds. Then, a Padé approximation, whose order should be chosen carefully to handle the trade-off between conservatism and complexity. A constructive way to derive minimal LFR from Padé approximations of any order is also provided as an additional contribution. The whole method is first assessed on a simple satellite benchmark, and its applicability to realistic problems involving a larger number of states and uncertainties is then demonstrated.
28 Oct 2023Submitted to International Journal of Robust and Nonlinear Control
30 Oct 2023Submission Checks Completed
30 Oct 2023Assigned to Editor
30 Oct 2023Review(s) Completed, Editorial Evaluation Pending
09 Nov 2023Reviewer(s) Assigned
19 Jun 20241st Revision Received
20 Jun 2024Reviewer(s) Assigned
22 Jul 2024Review(s) Completed, Editorial Evaluation Pending
25 Jul 2024Editorial Decision: Revise Minor
03 Oct 20242nd Revision Received
11 Oct 2024Submission Checks Completed
11 Oct 2024Assigned to Editor
11 Oct 2024Review(s) Completed, Editorial Evaluation Pending
14 Oct 2024Reviewer(s) Assigned
28 Nov 2024Editorial Decision: Accept