The implementation of efficient security mechanisms for Radio Frequency Identification (RFID) system has always been a continuous challenge due to its limited computing resources. Previously, hash-based, symmetric-key cryptography-based and elliptic curve cryptography based security protocols were proposed for RFID system. However, these protocols are not suitable because some of them failed to fulfill the RFID security requirements, and some of them produce high computational overhead. Recently researchers have focused on developing an efficient security mechanism based on hyperelliptic curve cryptography (HECC) which provides high security with 80 bits lower-key size. In this paper, we propose an efficient RFID authentication scheme based on hyperelliptic curve Signcryption. The proposed authentication scheme provides the required security features for the RFID system as well as security from potential attacks. We validated our proposed scheme’s security by utilizing a widely used simulation tool, Automated Validation of Internet Security Protocols and Applications (AVISPA). Furthermore, the results reveal that the computational, communication and storage overheads of the proposed scheme are much less than the other recently proposed schemes. Compared to the most recently published work based on ECC Signcryption, our scheme is 70% efficient in terms of computational overhead, 42.7% efficient in terms of communication overhead, and 50% efficient in terms of storage overhead. Therefore, the proposed scheme is more efficient as compared to the recently published work in this domain. Hence, it is an attractive solution for resource-limited devices like RFID tags.