Linh Nguyen

and 3 more

Nalika Ulapane

and 3 more

Identification of static nonlinear elements (i.e., nonlinear elements whose outputs depend only on the present value of inputs) is crucial for the success of system identification tasks. Identification of static nonlinear elements though can pose several challenges. Two of the main challenges are: (1) mathematical models describing the elements being unknown and thus requiring black-box identification; and (2) collection of sufficiently informative measurements. With the aim of addressing the two challenges, we propose in this paper a method of predetermining informative measurement points offline (i.e., prior to conducting experiments or seeing any measured data), and using those measurements for online model calibration. Since we deal with an unknown model structure scenario, a high order polynomial model is assumed. Over fit and under fit avoidance are achieved via checking model convergence via an iterative means. Model dependent information maximization is done via a D-optimal design of experiments strategy. Due to experiments being designed offline and being designed prior to conducting measurements, this method eases off the computation burden at the point of conducting measurements. The need for in-the-loop information maximization while conducting measurements is avoided. We conclude by comparing the proposed D-optimal design method with a method of in-the-loop information maximization and point out the pros and cons. The method is demonstrated for the single-input-single-output (SISO) static nonlinear element case. The method can be extended to MISO systems as well.

Viet-Anh Le

and 2 more

The paper presents a novel approach by using multi- step predictions to address the adaptive sampling problem in a resources and obstacles constrained mobile robotic sensor network to efficiently monitor environmental spatial phenomena. It is first proposed to employ the Gaussian process (GP) to represent the spatial field, which can then be used to predict the field at unmeasured locations. The adaptive sampling problem aims to drive the mobile sensors to optimally navigate the environment where the sensors adaptively take measurements of the spatial phenomena at each sampling step. To this end, a conditional entropy based optimality criterion is proposed, which aims to minimize prediction uncertainty of the GP model. By predicting possible measurements the mobile sensors potentially take in a horizon of multiple sampling steps ahead and exploiting the chain rule of the conditional entropy, a multi-step predictions based adaptive sampling optimization problem is formulated. The objective of the optimization problem is to find the optimal sampling paths for the mobile sensors in multiple sampling steps ahead, which then provides their benefits in terms of better navigation, deployment and data collection with more informative sensor readings. However, the optimization problem is nonconvex, complex, constrained and mixed-integer. Therefore, it is proposed to employ the proximal alternating direction method of multipliers algorithm to efficiently solve the problem. More importantly, the solution obtained by the proposed approach is theoretically guaranteed to be converged to a stationary value. Effectiveness of the proposed algorithm was extensively validated by the real- world dataset, where the obtained results are highly promising.