This paper presents performance evaluation of hierarchical optimization and control for distributed energy resource management system (DERMS) in large distribution networks via an advanced hardware-in-the-loop (HIL) platform. The HIL platform provides realistic testing in a laboratory environment, including the accurate modeling of a full-scale distribution system of 11,000 nodes, the DERMS software controller, and 90 power hardware photovoltaics (PVs) and battery inverters. The applied DERMS algorithm is designed based on a realtime optimal power flow algorithm and implemented with acceleration design that performs fast dispatch of simulated PVs and real physical hardware DER devices every 4 seconds.