We describe in the paper a ring voltage-controlled oscillator (VCO) indicating an improved phase noise over a wide range of frequency offsets and an extended frequency/voltage tuning range. The phase noise is improved by leveraging a better linearity approach, while reducing the VCO gain and maintaining wide tuning range. The proposed VCO is a block of a time-domain comparator embedded in a monitoring and readout circuit of an industrial sensor interface. An analytical model is extracted resulting in closed-form expressions for both input-referred noise and phase noise of the VCO. Employing the analytical expressions, the contributed noise and phase noise limitations are fully addressed, and all the effective factors are investigated. The prototype of the proposed VCO was implemented and fabricated in a 0.35 µm CMOS process. The integrated VCO consumes 0.903 mW from a 3.3 V supply, when running at its maximum frequency of 9.37 MHz. The measured phase noise of the proposed VCO is -147.57 dBc/Hz at 1 MHz offset from the 9.37 MHz oscillation frequency, and the occupied silicon area of circuit is 0.005 mm2.