Shimaa Naser

and 6 more

Visible light communication is envisaged as a promising enabling technology for sixth generation (6G) and beyond networks. It was introduced as a key enabler for reliable massive-scale connectivity, mainly thanks to its simple and low-cost implementation which require minor variations to the existing indoor lighting systems. The key features of VLC allow offloading data traffic from the current congested radio frequency (RF) spectrum in order to achieve effective short-range, high speed, and green communications. However, several challenges prevent the realization of the full potentials of VLC, namely the limited modulation bandwidth of light emitting diodes, the interference resulted from ambient light, the effects of optical diffuse reflection, the non-linearity of devices, and the random receiver orientation. Meanwhile, centralized machine learning (ML) techniques have exhibited great potentials in handling different challenges in communication systems. Specifically, it has been recently shown that ML algorithms exhibit superior capabilities in handling complicated network tasks, such as channel equalization, estimation and modeling, resources allocation, opportunistic spectrum access control, non-linearity compensation, performance monitoring, detection, decoding/encoding, and network optimization. Nevertheless, concerns relating to privacy and communication overhead when sharing raw data of the involved clients with a server constitute major bottlenecks in large-scale implementation of centralized ML techniques. This has motivated the emergence of a new distributed ML paradigm, namely federated learning (FL). This method can reduce the cost associated with transferring the raw data, and preserve clients privacy by training ML model locally and collaboratively at the clients side. Thus, the integration of FL in VLC networks can provide ubiquitous and reliable implementation of VLC systems. Based on this, for the first time in the open literature, we provide an overview about VLC technology and FL. Then, we introduce FL and its integration in VLC networks and provide an overview on the main design aspects. Finally, we highlight some interesting future research directions of FL that are envisioned to boost the performance of VLC systems.

Selina Shrestha

and 6 more

Shimaa Naser

and 3 more

The sixth generation (6G) of wireless networks are envisioned to support a plethora of human-centric applications and offer connectivity to a massive number of devices with diverse requirements, thus enabling massive Machine Type Communications. Nevertheless, with the rapid growth of the number of connected devices as well as the ever-increasing network traffic, network energy consumption has become a major challenge. Additionally, 6G is expected to catalyze the emergence of new applications that are characterized by their harsh environmental conditions, with ultra-small and low-cost wireless devices. Therefore, there is a pressing need for developing sustainable solutions that take into consideration all these requirements in order to realize the full potential of 6G networks. Within this context, zero-energy devices (ZEDs) have emerged as a prominent solution for the next generation green communication architecture. Such devices eliminate the need for recharging plugins and replacing batteries by integrating disruptive technologies, such as radio frequency energy harvesting, backscatter communications, low power computing, and ultra-low power receivers. Motivated by this, this article provides an in-depth review of the existing literature on the newly emerging ZEDs for future networks. We further identify different relevant use cases and provide an extensive overview on the key enabling technologies and their requirements for realizing ZED-empowered networks. Finally, we discuss potential future research directions and challenges that are envisioned to enhance the performance and efficiency of ZED-based networks.

Lina Bariah

and 7 more

The increasing demand for wireless connectivity and the emergence of the notion of the Internet of Everything require new communication paradigms that will ultimately enable a plethora of new applications and new disruptive technologies. In this context, the present contribution investigates the use of the recently introduced intelligent reflecting surface (IRS) concept in unmanned aerial vehicles (UAV) enabled communications aiming to extend the network coverage and improve the communication reliability as well as spectral efficiency of Internet of Things (IoT) networks. In particular, we first derive tractable analytic expressions for the achievable symbol error rate (SER), ergodic capacity, and outage probability of the considered set up. Following this, we also derive tight upper and lower bounds on the average signal-to-noise ratio (SNR). Our derivations are then compared with the corresponding asymptotic performance, based on the central limit theorem (CLT) assumption, which reveals that the asymptotic SNR falls within the area between derived bounds, and approaches either bound depending on the number of reflective elements (REs). We further show that the asymptotic SER becomes in a tight agreement with the corresponding exact simulation SER for > 16. In addition, the offered results demonstrate that the use of the IRS is significantly effective as they assist in improving the achievable SER by five orders of magnitude. We further demonstrate that, in terms of achievable ergodic capacity, IRS-assisted UAV communication systems can exhibit ten times higher capacity compared to conventional UAV communications. Based on the above, these results and related insights are anticipated to be useful in the design and deployment of IRS-assisted UAV systems in the context of beyond 5G communications, such as 6G communications.