Position sensitive CdZnTe Compton imaging cameras are currently being studied for their use of proton beam range verification for radiotherapy applications. This work presents the use of an experimental large volume CdZnTe detector for the detection of prompt gamma rays that are emitted from proton-nuclei interaction within plastic (C2H4) targets. Two experiments were conducted where the incident angle and the dose profile of the beam were varied. The energy spectra from these experiments show that the angle at which the beam enters the target can influence the photopeak to Compton continuum ratios, resulting in more than 18% increase at 718 keV when the beam is parallel to the detector. Images of the 718 keV and 4.44 MeV characteristic prompt gamma ray emission from carbon-proton interactions are reconstructed using list-mode maximum likelihood expectation maximization (MLEM). Images from these prompt gamma emissions line up well with the expected location of the proton beam within the plastic targets.