Traditionally, the heart sound classification process is performed by first finding the elementary heart sounds of the phonocardiogram (PCG) signal. After detecting sounds S1 and S2, the features like envelograms, Mel frequency cepstral coefficients (MFCC), kurtosis, etc., of these sounds are extracted. These features are used for the classification of normal and abnormal heart sounds, which leads to an increase in computational complexity. In this paper, we have proposed a fully automated algorithm to localize heart sounds using K-means clustering. The K-means clustering model can differentiate between the primitive heart sounds like S1, S2, S3, S4 and the rest of the insignificant sounds like murmurs without requiring the excessive pre-processing of data. The peaks detected from the noisy data are validated by implementing five classification models with 30 fold cross-validation. These models have been implemented on a publicly available PhysioNet/Cinc challenge 2016 database. Lastly, to classify between normal and abnormal heart sounds, the localized labelled peaks from all the datasets were fed as an input to the various classifiers such as support vector machine (SVM), K-nearest neighbours (KNN), logistic regression, stochastic gradient descent (SGD) and multi-layer perceptron (MLP). To validate the superiority of the proposed work, we have compared our reported metrics with the latest state-of-the-art works. Simulation results show that the highest classification accuracy of 94.75% is achieved by the SVM classifier among all other classifiers.
Alcoholism is a widely affected disorder that leads to critical brain deficiencies such as emotional and behavioural impairments. One of the prominent sources to detect alcoholism is by analysing Electroencephalogram (EEG) signals. Previously, most of the works have focused on detecting alcoholism using various machine and deep learning algorithms. This paper has used a novel algorithm named Sliding Singular Spectrum Analysis (S-SSA) to decompose and de-noise the EEG signals. We have considered independent component analysis (ICA) to select the prominent alcoholic and non-alcoholic components from the preprocessed EEG data. Later, these components were used to train and test various machine learning models like SVM, KNN, ANN, GBoost, AdaBoost and XGBoost to classify alcoholic and non-alcoholic EEG signals. The sliding SSA-ICA algorithm helps in reducing the computational time and complexity of the machine learning models. To validate the performance of the ICA algorithm, we have compared the computational time and accuracy of ICA with its counterpart, like principal component analysis (PCA). The proposed algorithm is tested on a publicly available UCI alcoholic EEG dataset. To verify the performance of machine learning models, we have calculated various metrics like accuracy, precision, recall and F1 score. Our work reported the highest accuracy of 98.97% with the XGBoost classifier. The validation of the proposed method is done by comparing the classification metrics with the latest state-of-the-art works.