We present a guided mode resonance grating based on the incorporation of an electro-optic material with monolayer WS2. The grating is designed to exhibit highly selective directional photo-luminescent emission. We study the effect of doubling the grating period via the introduction of an alternating index perturbation. Using numerical simulations, we show that period doubling leads to formation of a photonic band gap and spectral splitting in the absorptivity (or emissivity) spectrum. We anticipate that this effect can either be used to switch on and off the emissivity at a fixed wavelength, or toggle between single- and double-wavelength emission.