Many powered prosthetic devices use load cells to detect ground interaction forces and gait events. These sensors introduce additional weight and cost in the device. Recent proprioceptive actuators enable an algebraic relationship be?tween actuator torques and ground contact forces. This paper presents a proprioceptive force sensing paradigm which esti?mates ground reaction forces as a solution to detect gait events without a load cell. A floating body dynamic model is obtained with constraints at the center of pressure representing foot-ground interaction. Constraint forces are derived to estimate ground reaction forces and subsequently timing of gait events. A treadmill experiment is conducted with a powered knee-ankle prosthesis used by an able-bodied subject walking at various speeds and slopes. Results show accurate gait event timing, with pooled data showing heel strike detection lagging by only 6.7 ± 7.2 ms and toe off detection leading by 30.4 ± 11.0 ms compared to values obtained from the load cell. These results establish proof of concept for predicting gait events without a load cell in powered prostheses with proprioceptive actuators.