This work aims to develop an adaptive remeshing procedure for finite element method on electromagnetic computations. A thorough comparison of metric computation strategies is carried out as it constitutes a cornerstone of this developments. This procedure will focus on the mesh size adaptation to distribute the error uniformly over a computational domain, in order to obtain a user-prescribed accuracy of the solution. Also, it shall enable dealing with complex geometries for electromagnetic-coupled material processing applications. For this purpose, a quasi-steady state approximation of the Maxwell’s equations in a time-domain formalism is considered. The automatic remeshing procedure is based on the following key steps: An a posteriori error estimator to pinpoint the critical areas needing refinement or allowing coarsening. An anisotropic metric approximation. Both steps use a global field recovery algorithm in order to enable robust gradient computation. Finally, several 3D test cases are presented.